Michael A. (Tony) Hollingsworth, Ph.D.

Professor, Eppley Institute

Department of Biochemistry and Molecular Biology
Department of Pathology and Microbiology

Phone:  402-559-8343
Fax:  402-559-7319
E-Mail: Michael Hollingsworth

Michael A. (Tony) Hollingsworth, Ph.D.

Education

Ph.D. - Wake Forest University, 1982
Postdoc - Duke University Medical Center

Research Interests

The general subject of research in my laboratory is pancreatic cancer and other diseases of the pancreas, primarily pancreatitis. We have used modern techniques of molecular biology, biochemistry, cell biology, and immunology to develop a comprehensive program of investigation into the biology of normal and diseased pancreatic ductal epithelial cells.

Other projects in the lab involve the application of different cDNA cloning techniques to identify genes and their encoded proteins that are important to the process of development and differentiation of normal ductal cells in the human pancreas, and which may contribute to the pathogenesis of different diseases.

Specific funded projects.

Studies on the Post-Translational Processing of MUC1 (NIH R01 CA57362)

We cloned a cDNA for MUC1 from pancreatic adenocarcinoma cells in the late 1980's. MUC1 is an integral cell surface protein that has mucin-like characteristics and may play a role in cellular adhesion, anti-adhesion, and signal transduction events related to adhesion. The MUC1 protein receives a variety of distinct post-translational modifications (glycosylation, sulfation phosphorylation) in different normal cells and these are altered in tumors and other disease states. We are investigating the nature and biological functions of the different modifications in disease conditions. For example, altered glycoforms of MUC1 may play a role in the ability of tumor cells to metastasize.

SPORE in Pancreatic Cancer (P50 CA127297)

NCI’s SPOREs (Specialized Programs of Research Excellence) focus on a specific organ site and are designed to enable the rapid and efficient movement of basic scientific findings into clinical settings. The projects in the SPORE focus on translational studies that address basic and clinical issues of importance to improve the outcome of patients with pancreatic cancer, and seek to 1) develop and test novel diagnostic reagents and assays that will improve our ability to detect pancreatic cancer in its early stages; 2) develop and test novel diagnostic strategies including immunotherapy, chemotherapy, and chemoradiation therapy for patients with early and advanced pancreatic cancer, and 3) undertake basic research studies in conjunction with clinical trials that will provide insight at the molecular level into the reasons for success and failure of the different strategies.

 All projects in this SPORE use human specimens for translational research directed at reducing the incidence and mortality of pancreatic cancer. In order to provide the necessary specimens, a Pancreas Tumor SPORE Tissue Bank has been developed in cooperation with and under the auspices of the University of Nebraska Medical Center (UNMC) Tissue Procurement Shared Resource.

Early Diagnosis of Pancreatic Cancer (NIH 5 UO1 CA111294)

The EDRN was created as a foundation for collaborative research on molecular, genetic, and other biological "markers" of human cancers with the goal of creating a multicenter network to discover and coordinate the evaluation of biomarkers for the early detection of common cancers, such as prostate, breast, lung, colorectal, ovarian, and upper aerodigestive tract cancers. These biomarkers could be present in blood, urine, sputum, or tissues and could serve as indicators of early cancer or of risk for impending cancer. Objectives of the EDRN are:

The goal of this project is to develop early diagnostic tests for pancreatic cancer. We propose two experimental approaches. One is to improve the utility of the CA19-9 and related tests for pancreatic cancer and other GI cancers by adding to the test a determination of the core protein on which this carbohydrate antigen is detected. This proposal is based upon recent discoveries about the molecular nature of different mucin core proteins that are expressed by different adenocarcinomas, the development of new monoclonal antibodies against these core proteins, and recently obtained knowledge that will enable the development of additional reagents that improve this existing diagnostic test. The second experimental approach is to identify novel proteins that are expressed in the sera and body fluids of patients with premalignant lesions of the pancreas (pancreatic intraepithelial neoplasms - PanIn) by using proteomics techniques. We will employ different highly sensitive and complementary proteomics approaches to identify novel proteins and peptides that appear in serum concomitant with the development of advanced premalignant PanIn lesions. Parallel studies will be performed in newly developed murine systems of PanIn lesions and pancreatic cancer. We will also develop and investigate in vitro cell culture model systems (human and mouse) that represent different stages of PanIn lesions. This information will be used to develop tests (conventional serum or body fluid assays or specialized proteomics assays) that can be widely applied to identify individuals with advanced PanIn lesions, who would become candidates for intensive screening programs, chemoprevention studies, and studies of early intervention.

BrevaRex MAB-AR20.5 Preclinical Studies in MUC1 Transgenic Mice Orthotopically Transplanted with PANC 02.MUC1 Pancreatic Cancer Cells Source and identifying number (Unither Pharamaceuticals)
Unither Pharmaceuticals Inc. has developed a monoclonal antibody to MUC1 (BrevaRex® MAb-AR20.5), which it plans to develop for the treatment of pancreatic cancer.

Utilizing the MUC1-transgenic (MUC1-Tg) animal model developed by Dr. Sandra Gendler at the Mayo Clinic in Scottsdale, AZ, and an orthotopic tumor model developed by Dr. Hollingsworth’s team, we propose to assess the ability of MAb-AR20.5 to break tolerance to MUC1 and to influence tumor growth. This model is best suited for pre-clinical studies because the target antigen (MUC1) is a self antigen in this system, as it is in cancer patients. As a consequence, the host, although fully immune competent, is tolerant to MUC1, allows the growth of MUC1-expressing tumors that display similar features of tumor progression and immune regulator pathways as human cancer victims.

We hypothesize that this anti-MUC1 antibody when combined with soluble or cell-bound MUC1 can break humoral and cellular tolerance to MUC1 in this model. This immunity, if optimally induced, can be protective of cancer in a MUC1-transgenic mouse tumor model and ultimately in patients with MUC1-expressing tumors. To test this hypothesis, we propose to immunize MUC1-transgenic mice carrying Panc02.MUC1 orthotopic tumors and test the ability of MAb-AR20.5 to induce MUC1-specific B and T cells and to reject or inhibit tumor growth in this model.

The specific aims of this project are: (1) To assess the release of MUC1 into the serum of MUC1-transgenic mice, transplanted with Panc02.MUC1 tumors into the pancreas as well as subcutaneously into the flank. Mice transplanted s.c. with B16-MUC1 tumor cells will also be assessed. Blood samples are taken at baseline (before tumor transplantation) and at 2, 4, 6, 8, 10 (Panc02.MUC1) or weeks 1, 2, 3, 4 (B16.MUC1); (2) To demonstrate the ability of MAb-AR20.5 to induce MUC1-specific T and B cell responses and to control tumor growth in MUC1-transgenic mice transplanted orthotopically with Panc02.MUC1 tumors; (3) To assess if gemcitabine and 5-FU have an anti-tumor effect in MUC1-transgenic mice transplanted orthotopically with Panc02.MUC1 tumors.

Smoking and Pancreatic Cancer (NIH R01 CA133774)

I am a Co-Investigator on a project (Principal Investigator, Surinder Batra, PhD) that is focused on understanding the association of smoking with pancreatic cancer. Both in vitro and in vivo models will be used for investigating the etiology of pancreatic cancer.

Selected Publications