UNMC_Acronym_Vert_sm_4c
University of Nebraska Medical Center

Kenneth Cowan, MD, PhD

Professor, UNMC Department of Internal Medicine
Lead Investigator, Integrated Cancer Repository for Cancer Research
Research focus: Breast cancer

402-559-4238

Kenneth Cowan, MD, PhD

Kenneth H. Cowan, MD, PhD, is a professor in the Oncology and Hematology Division of the UNMC Department of Internal Medicine. He previously served as director of both the Fred & Pamela Buffett Cancer Center and the Eppley Institute for Research in Cancer and Allied Diseases.

After completing his residency training at Texas Southwestern Affiliated Hospitals in Dallas, Dr. Cowan spent 21 years in the Public Health Service at the National Cancer Institute. He served as chief of the Medical Breast Cancer Section, Medicine Branch. In his NCI position, he was responsible for overseeing laboratory researchers and clinical staff involved in basic and clinical research in breast cancer.

A New York City native, Dr. Cowan earned his undergraduate degree at the University of Rochester in Rochester, NY, and his medical and doctorate degrees from Case Western Reserve University in Cleveland. He has authored more than 240 papers for scientific journals and has been an invited guest lecturer at numerous scientific conferences.

Education
  • Medical School: Case Western Reserve University School of Medicine, 1975
  • Residency: Internal Medicine, Parkland Memorial Hospital, 1978
  • Fellowship: Oncology, National Cancer Institute, 1981
Research

Breast cancer research, with a goal of determining whether patients can be reconstituted long term with gene modified hematopoietic cells and whether the expression of drug resistance genes in hematopoietic progenitor cells will permit treatment with higher doses of chemotherapy and overcome clinical drug resistance in patients with breast cancer.

Cowan Laboratory

Our laboratory is interested in understanding the role of tumor suppressor genes in the development of human tumors.

We have constructed a series of recombinant viral vectors to study the effects of overexpression of tumor suppressor genes on the biology of breast cancer and for use in gene therapy of human tumors.

Recombinant non-replicating adenoviral vectors are useful for these studies for several reasons:

  1. Human breast cancer cells (as well as many other normal and transformed human cell lines) contain high levels of adenoviral receptors and are readily infected by adenoviral vectors.
  2. Adenoviral vectors infect both replicating and quiescent cells.
  3. High levels of intracellular transgene expression is detected within 12 hours following infection with adenoviral vectors.

We have constructed a series of adenoviral vectors, including a vector that expresses the wild type breast cancer tumor suppressor gene BRCA1, and have studied the effects of tumor suppressor gene overexpression on cell cycle regulation and apoptosis in human breast cancer cells both in vitro and in vivo.

Our laboratory has also been involved in identifying the mechanisms associated with development of multi-drug resistance and the regulation of expression of drug resistance genes in human tumor cells.

We have isolated a series of drug resistant human breast cancer cell lines, studied their pharmacological characteristics, and identified the genes associated with resistance in each cell line. We are also examining the ability to transfer drug resistance genes into hematopoietic stem cells in clinical trials in patients with breast cancer patients treated with high dose chemotherapy and hematopoietic stem cell rescue.

The goal of these studies is to determine whether patients can be reconstituted long term with gene modified hematopoietic cells and whether the expression of drug resistance genes in hematopoietic progenitor cells will permit treatment with higher doses of chemotherapy and overcome clinical drug resistance in patients with breast cancer.