

Perlmutter Cancer Center Multiple Myeloma Research Program

ASH 2022 UPDATE - MULTIPLE MYELOMA

FAITH DAVIES

Professor of Medicine, NYU Grossman School of Medicine.

DISCLOSURES

Advisory boards

- Amgen
- AbbVie
- BMS/Celgene
- GSK
- Janssen
- Meridian Therapeutics
- Oncopeptide
- Regeneron
- Sanofi
- Takeda

Off label drug use - bispecific antibodies and ADCs

Areas with new important data

- Data concerning population screening for plasma cell dyscrasia (iSTOP study)
- Treatment of high risk smoldering
- Upfront therapy frail, high risk
- Maintenance
- Relapse therapy
- Disease monitoring (MRD analysis, mass spec)
- Single cell analysis of tumor and microenvironment

Newly diagnosed – Elderly frail patients

- Fitness and ability to tolerate MM treatment varies among older patients
 - Frailty is associated with increased risk of death, disease progression, higher rates of non-hematologic AEs, and treatment discontinuation in patients with MM
- DRd is a standard regimen for newly diagnosed transplant-ineligible patients with MM, but rates of pneumonia are higher with DRd vs Rd, particularly in frail patients
- IFM 2017-03 is a phase III trial evaluating whether a dexamethasone-sparing regimen of daratumumab + lenalidomide would be effective and limit toxicity in frail patients compared with lenalidomide + dexamethasone⁵
 - Current interim analysis at 12 months of therapy reported on response and safety⁵

IFM 2017-03

• Randomized, open-label, multicenter phase III trial

Stratification by ISS (I vs II vs III) and age (<80 vs ≥80 yr)

⁺DR included low-dose dexamethasone 20 mg/wk during cycles 1,2, along with SC daratumumab dosing.

- Primary endpoint: PFS (not yet reported)
- Interim analysis at 12 mo of therapy: ORR, ≥ VGPR, MRD rate, grade ≥3 AEs

Baseline Characteristics

Characteristic	DR (n = 199)	Rd (n = 94)
Median age, yr (range)	81 (68-92)	81 (68-90)
Age category, n (%) ■ 65 to <70 yr ■ 70 to <75 yr ■ 75 to <80 yr ■ ≥80 yr	2 (1) 30 (15) 49 (25) 118 (59)	2 (2) 13 (14) 19 (20) 61 (65)
Female, n (%)	101 (51)	48 (51)
ECOG PS 0/1/2, %	10/46/44	10/50/40
Charlson ≤1, n (%)	113 (58)	57 (61)
 IFM frailty score, n (%) ≤1 2 3 4 5 	0 57 (29) 81 (41) 44 (22) 17 (9)	0 35 (37) 26 (28) 24 (26) 9 (10)

Characteristic	DR (n = 199)	Rd (n = 94)
ISS disease stage I/II/III, %	17/51/32	19/53/28
Measurable disease type, n (%) IgG IgA PBI only 	113 (57) 38 (19) 21 (11)	49 (52) 20 (21)
 SFLC only 	21 (11) 27 (14)	10 (11) 15 (16)
Cytogenetics profile,* n (%) Standard risk High risk del17p t(4;14) t(14;16) 	148 (83) 31 (17) 16 (9) 9 (5) 6 (3)	60 (78) 17 (22) 11 (14) 5 (6) 3 (3)
Creatinine clearance, n (%) <30 mL/min 30 to <60 mL/min ≥60 mL/min 	1 (1) 119 (60) 79 (40)	3 (3) 50 (53) 41 (44)

Response Rates

Response	DR (n = 199)	Rd (n = 94)	P Value
ORR, %	96	85	.001
■ CR	17	10	
VGPR	47	33	
■ PR	32	42	
≥ VGPR	64	43	
MRD at 10 ⁻⁵ by NGS <i>,</i> * %	10	3	.012

- Similar improvement in rate of ≥ VGPR with DR across all subgroups analyzed, including IFM frailty score (P = .87) and cytogenetic risk (P = .29)
- Fewer discontinuations in DR arm vs Rd arm (32% vs 45%)

Most Common Grade ≥3 AEs	DR (n = 199)	Rd (n = 94)	P Value
Any grade ≥3 AE, n (%)	164 (82)	64 (68)	.010
SAE, n (%)	109 (55)	59 (63)	.21
Grade ≥3 hematologic AEs, n (%) Anemia Neutropenia Thrombocytopenia 	109 (55) 21 (11) 91 (46) 18 (9)	24 (26) 2 (2) 17 (18) 3 (3)	<.0001 .010 <.0001 .089
Grade ≥3 infection, n (%) ■ Non–COVID-19 infections ■ Pneumonia ■ COVID-19	26 (13) 17 (9) 5 (3) 9 (5)	17 (18) 13 (14) 7 (7) 4 (4)	.29 .21 .060 1
Treatment discontinuation for AE, n (%)	27 (14)	15 (16)	.65

Safety by IFM Frailty Score Subgroups

Most Common Grade ≥3 AEs	IFM Frailty Score 2 + 3 (n = 199)			IFM Frailty Score 4 + 5 (n = 94)		
	DR (n = 138)	Rd (n = 61)	P Value	DR (n = 61)	Rd (n = 33)	P Value
SAE, n (%)	74 (54)	35 (57)	.65	35 (57)	24 (73)	.18
 Infection, n (%) Non–COVID-19 infections Pneumonia COVID-19 	13 (9) 10 (7) 2 (1) 3 (2)	8 (13) 6 (10) 3 (5) 2 (3)	.46 .58 .17 .64	13 (21) 7 (11) 3 (5) 6 (10)	9 (27) 7 (21) 4 (12) 2 (6)	.61 .23 .24 .71

Conclusions

- In phase III IFM 2017-03 trial assessing frail patients with newly diagnosed MM, DR was associated with higher response rates vs Rd
 - ORR: 96% with DR vs 85% with Rd
 - Higher MRD negativity rates (10% vs 3%, respectively) and rapid responses
- DR associated with favorable safety profile and no increased risk of infection or pneumonia compared to Rd
 - Treatment discontinuation rates were similar between arms
- Encouraging potential for dexamethasone-sparing strategy in frail patients, but longer follow-up is needed, with PFS

Extended intensified post-ASCT consolidation with Daratumumab, Bortezomib, Lenalidomide and Dexamethasone (Dara-VRd) for Ultra-High Risk (UHiR) Newly Diagnosed Myeloma (NDMM) and Primary Plasma Cell Leukemia (pPCL): the UK OPTIMUM/MUKnine Trial.

Martin Kaiser, Andrew Hall, Isabelle Smith, Ruth M De Tute, Sadie Roberts, Emma Ingleson, Kristian Bowles, Mamta Garg, Anand Lokare, Christina Messiou, Richard Houlston, Graham Jackson, Gordon Cook, Guy Pratt, Mark T Drayson, Roger G. Owen, Sarah R Brown, Matthew W Jenner

The Institute for Cancer Research, London, United Kingdom; Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, United Kingdom; HMDS Laboratory, St James' Institute of Oncology, Leeds, United Kingdom; Norfolk and Norwich University Hospitals NHS Trust, Norwich, United Kingdom; Haematology, Leicester Royal Infirmary/University Hospitals of Leicester NHS Trust, Leicester, United Kingdom; Birmingham Heartlands Hospital, Birmingham, United Kingdom; Royal Marsden Hospital and Institute of Cancer Research, London, United Kingdom; Department of Haematology, University of Newcastle, Newcastle-upon-Tyne, United Kingdom; University Hospitals Birmingham, NHS Foundation Trust, Birmingham, United Kingdom; CTRU, University of Leeds, Leeds, United Kingdom; University Hospitals Birmingham, University of Southampton, University of Leeds, Leeds, United Kingdom; University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom

High-Risk MM - the unmet need

Currently no uniform treatment standard

Presented by: Martin Kaiser, MD, FRCP, FRCPath @MyMKaiser

Presented by: Martin Kaiser, MD, FRCP, FRCPath @MyMKaiser

Trial screening for UHiR MM, inclusive for PCL

Presented by: Martin Kaiser, MD, FRCP, FRCPath @MyMKaiser **#ASH22** Content of this presentation is property of the author. Permission required for use

Shah V, et al., Leukemia 2018, Shah V, et al., Leukemia 2020, Gowda L, et al., *Bone Marrow Transplantation*, 54 (1089-1093), 2019

14

Clinical UHiR context – digital comparator trial

OPTIMUM design (appraisal framework for external comparator trials (Thorlund et al., 2020)):

- Currently no treatment standard for UHiR group UK standard at design: VTD, single ASCT, observation
- Mirrored molecular UHiR criteria (Double hit and/or SKY92 risk signature)
- Contemporaneous external dataset: most recent UK phase 3 Myeloma XI trial for NDMM
 - KCRd (carfilzomib, cyclophosphamide, lenalidomide, dexamethasone) or CRd induction At time of design randomisation result not yet available
- Recruitment in same healthcare system
 - Same NHS hospitals/geography, virtually identical trial entry criteria

15

#ASH22 Content of this presentation is property of the author. Permission required for use Brown S, et al., BMJ Open 2020 Jackson G., et al., PLOS Med 2021

Trial therapy

Trial objectives

Evaluate efficacy of Dara-(C)VRd before and after ASCT in Ultra High-Risk MM and PCL

- Progression free survival at 18 months compared against The Prior
- Progression free and overall survival end of Consolidation 2
- MRD at key timepoints
- Determine safety and toxicity of Dara-CVRd induction and Dara-VRd consolidation

Brown S, et al., BMJ Open 2021 16

UHiR populations: OPTIMUM and Myeloma XI

Patient Characteristics	OPTIMUM (n=107)	Myeloma XI (n=120)
Median age, yrs (range)	60 (35-78)	62 (33-69)
Male, n (%)	64 (60%)	69 (58%)
ISS Stage 1, n (%)	29 (27%)	23 (19%)
Stage 2, n (%)	43 (40%)	53 (44%)
Stage 3, n (%)	34 (32%)	38 (32%)
missing, n (%)	1 (1%)	6 (5%)
ECOG Performance Status		
0, n (%)	51 (48%)	47 (39%)
1, n (%)	42 (39%)	46 (38%)
≥2, n (%)	10 (9%)	22 (18%)
missing, n (%)	4 (4%)	5 (4%)
Molecular profiles		
Double hit genetics, n (%)	57 (53%)	55 (56%)*
SKY92 risk signature present, n (%)	82 (77%)	72 (72%)*
Both Double hit and SKY92, n (%)	33 (31%)	28 (29%)*

* in relation to 98 patients with complete GEP and genetic profiles

Comparable clinical & molecular characteristics

Presented by: Martin Kaiser, MD, FRCP, FRCPath @MyMKaiser

Extended Follow-up: End of Dara-VR Consolidation 2 OPTIMUM vs. Myeloma XI: PFS

Median follow-up 41.2 months

Presented by: Martin Kaiser, MD, FRCP, FRCPath @MyMKaiser

Extended Follow-up: End of Dara-VR Consolidation OPTIMUM vs. Myeloma XI: OS

Presented by: Martin Kaiser, MD, FRCP, FRCPath @MyMKaiser

Dose Reductions during Consolidation 2

n=80 patients, including earlier reductions Trial protocol encouraged early reductions (grade 1 AR)

Modification of therapy	Daratumumab	Bortezomib	Lenalidomide
No modification	79 (98.8%)	48 (69.0%)	46 (57.5%)
Hematological toxicity	0 (0%)	11 (28.8%)	17 (21.3%)
Non-Hematological toxicity	0 (0%)	26 (32.5%)	20 (25.0%)
Other	1 (1.3%)	1 (1.3%)	3 (3.8%)

- Collaborative trial designed with patients to address unmet need within healthcare system requirements
- Extended intensified consolidation with Dara-VR(d) is an effective treatment option for UHiR MM and PCL patients
- Continued improvement of PFS for OPTIMUM vs. Myeloma XI UHiR patients
- Early positive OS signal for OPTIMUM vs Myeloma XI UHiR patients
- Ongoing intensive consolidation required individualised dose reductions, but was tolerable for most patients, with cytopenia and infection main AEs
- OPTIMUM design explicitly balanced intensity and toxicity vs. high unmet need
- Successful recruitment suggests high unmet need for better diagnostics and therapy
- Results support allocation of resources to unmet need in restricted healthcare systems

Defining the optimum duration of lenalidomide maintenance after autologous stem cell transplant – data from the Myeloma XI trial.

Charlotte Pawlyn^{1,2}, Tom Menzies³, Faith Davies⁴, Ruth de Tute⁵, Rowena Henderson³, Gordon Cook^{3,6}, Matthew Jenner⁷, John Jones⁸, Martin Kaiser^{1,2}, Mark Drayson⁹, Roger Owen⁸, David Cairns³, Gareth Morgan⁴, Graham Jackson¹⁰

 The Institute of Cancer Research, London, UK; 2) The Royal Marsden Hospital, London, UK; 3) Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK; 4) Perlmutter Cancer Center, NYU Langone Health, New York, US; 5) HMDS, Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK; 4) Perlmutter Cancer Center, NYU Southampton NHS Foundation Trust, Southampton, UK; 8) Kings College Hospital NHS Frust, Leeds, UK; 9) Institute of Immunology and Immunotherapy, University of Birmingham, UK; 10) Department of Haematology, University of Newcastle, Newcastle,

On behalf of the Myeloma XI Trial Management Group and NCRI Haem-Onc Clinical Studies Group

Pawlyn et al ASH 2022, Abstract 570

Lenalidomide maintenance after ASCT

Attal M, et al. N Engl J Med. 2012;366:1782-91, McCarthy PL, et al. N Engl J Med. 2012;366:1700-81, Palumbo A, et al. N Engl J Med. 2014;371:895-905, McCarthy PL et al., J Clin Oncol. 2017 Oct 10;35(29):3279-3289, Jackson GH, et al. Lancet Oncol 2019;20(1) 57-73

Myeloma XI

InductionMaintenanceNDMM TE
Myeloma XI induction
protocols and ASCTImage: Comparison of the tension of te

N=1248 Median follow up: 44.7 months (IQR 32.4-62.7)

Exclusion criteria

- Failure to respond to lenalidomide as induction IMiD or progressive disease
- Previous or concurrent active malignancies
- Dialysis dependent renal failure

Pawlyn et al ASH 2022, Abstract 570

Outcomes from maintenance randomisation – overall population

PFS PFS2 100 100 Lonabilioned Lietáldomille maintenance No maintenance Observation 00 LEN BÜ BO) **_EN** 32 (95% CI, 28-38) en. 64 (95% C), 54-78 (16) 30 (Ju) 70. 70 control BŰ. 60 control 58 50 40 40 30 38 Obs. Median PFS2: 61 (95% EI, 56-73) 20-20 Len Median PFS2: NE (95% CI, 82-NE) 19-Hazard ratio for progression or death. 0.52 (95% CJ. 0.45-0.61 10 Hazard ratio for second progression or death, 0.65 (95% Cl. 0.64-0.81) P<0.001 P<0.0001 12 -0 6 18 78 35 42 154 60 70 四月. DE 72 Months since randomization Vonths since maintenance randomisati at risk (number censored Number at risk (number censored Number 200.00 ENGLISTIC. Saturily. Lenakcomide mantenance 105.040 ALC: YULK Lenaldornide li (256) No maintenance \$10.00 40.0 Observation 218.00 122 (4) 386 (22) where which B1 (127) 40 million 2014781 41190N 012991 402.(3.4) 202/(22) 1421 (1061) 64 (251) 10(0:0)

Hazard Ratio 0.52*

Hazard Ratio 0.66*

Pawlyn et al ASH 2022, Abstract 570

64. 30 107.108

*p<0.05

Myeloma

XT

Myeloma

XI

Outcomes from maintenance randomisation

MRD status was assessed by flow cytometry (median sensitivity 4x10⁵)

Multiple landmark analyses

Median duration of lenalidomide therapy 28 cycles (range 1-96)

Patients still on therapy 330/730 (45%)

Myeloma

Outcomes from multiple landmarks – overall population

Pawlyn et al ASH 2022, Abstract 570

Myeloma

XT

*p<0.05

Outcomes from multiple landmarks – by MRD status

Myeloma

PFS

XI

*p<0.05

Can this help us personalise therapy?

 $\ensuremath{\textbf{MRD}}\xspace+\ensuremath{\textbf{ve}}\xspace$ – continue maintenance to progression

MRD -ve:

Mveloma

Myeloma Can this help us personalise therapy? **MRD +ve** – continue maintenance to progression MRD -ve: MRD -ve MRD -ve Evidence that there is benefit from **2.5** further years of lenalidomide therapy before treatment effect may diminish 6 months Myeloma XI Continue Lenalidomide Stop 10mg/day, days 1-21/28 Future trials? 1 year 2 years 3 years

Pawlyn et al ASH 2022, Abstract 570

Conclusions

- These data suggest an ongoing PFS benefit associated with continuing lenalidomide maintenance beyond <u>at least 4-5 years</u> in the overall patient population
- Even in patients with sustained MRD negativity, there is evidence of benefit from continuing lenalidomide maintenance for <u>at least 3 years</u> in total
 - Randomised trials to address the impact of stopping lenalidomide maintenance in patients with sustained MRD negativity could be considered, at no earlier than 3 years
- In patients who are MRD +ve these data support continuing lenalidomide until disease progression
- No evidence of cumulative haematological toxicity was identified
- These findings emphasise the need for long term follow up of maintenance studies to enable the exploration of such questions
 - There is a planned powered OS update of Myeloma XI in 2023

Mvelo

Relapsed disease

Bispecific antibodies

BCMA-CD3 Elranatamab

GPRC5D-CD3

Talquetamab

Antibody_drug conjugates

CD38-attenuated IFNα Modakafusp alfa

Elranatamab

MagnetisMM-3 Study

MagnetisMM-3 is an open-label, multicenter, non-randomized, phase 2 study

^a Refractory was defined as having disease progression while on therapy or within 60 d of last dose in any line, regardless of response

- By BICR assessment per IMWG response criteria (Kumar S, et al. Lancet Oncol 2016;17:e328-46)
- ^c By investigator assessment per IMWG response criteria

ADC=antibody drug conjugate; ANC=absolute neutrophil count; BCMA=B-cell maturation antigen; BICR=blinded independent central review; CAR-T=chimeric antigen receptor T-cell; CR=complete response; ECOG=Eastern Cooperative Oncology Group; IMWG=International Myeloma Working Group; MRD=minimal residual disease; ORR=objective response rate; OS=overall survival; PFS=progression-free survival; QW=once weekly; SC=subcutaneous

Elranatamab – MagnetisMM-3

20

0

Bahlis N et al ASH 2022, Abstract 159

Elranatamab – MagnetisMM-3

AEs of Special Interest: CRS and ICANS

 The step-up priming regimen successfully mitigated the rate and severity of CRS, and the CRS profile was predictable Grade

	12/32 mg step-up regimen (n=119)		
TEAE of special interest	CRS	ICANS	
Patients with TEAE, n (%)	67 (56.3)	4 (3.4)	
Maximum Grade 1	50 (42.0)	1 (0.8)	
Maximum Grade 2	17 (14.3)	3 (2.5)	
Maximum Grade ≥3	0	0	
Patients with >1 TEAE, n (%)	18 (15.1)	1 (0.8)	
Median time to onset of TEAE, d (range)	2.0 (1.0-9.0)	2.5 (1.0-4.0)	
Median time to resolution of TEAE, d (range)	2.0 (1.0-19.0)	2.0 (1.0-6.0)	
Patients who received tocilizumab ^b or steroids, n (%)			
Tocilizumab	27 (22.7)	2 (1.7)	
Steroids	10 (8.4)	2 (1.7)	
Permanent discontinuation due to AE, n (%)	0	0	

^a Patients who received 1 step-up priming dose of 44 mg in Wk 1 were excluded from this CRS and ICANS analysis (n=4); ^b Includes tocilizumab and siltuximab CRS and ICANS which were graded by American Society for Transplant and Cellular Therapy criteria (Lee DW, et al. Biol Blood Marrow Trans 2019;25:62) AE=adverse event; CRS=cytokine release syndrome; ICANS=immune effector cell-associated neurotoxicity syndrome; TEAE=treatment-emergent adverse event

14

CRS profile, patients received 12/32 step-up regimen (n=119)

Bahlis N et al ASH 2022, Abstract 159

Elranatamab – MagnetisMM-3

AEs of Special Interest: Infections

- Infections were reported in 66.7% (Grade 3/4, 35.0%) of patients
 - Median time to first onset of infections was 47.5 (range, 1.0-295.0) days
- COVID-19 related TEAEs were reported in 31 (25.2%) patients
 - 2 (1.6%) patients died due to COVID-19 pneumonia, both considered unrelated to treatment by the investigator
- 8 (6.5%) patients had an infection that led to permanent discontinuation of elranatamab
 - Most common infection TEAEs leading to treatment discontinuation were septic shock (n=2) and sepsis (n=2)
- Among patients with quantitative IgG data (n=101), 76 (75.2%) patients had IgG level <400 mg/dL during the study
- · Overall, 50 (40.7%) patients received IVIG during the study

	Cohort A (N=123)	
n (%)	Any grade	Grade 3/4
Infection TEAEs in ≥5% of patients		
COVID-19 related ^a	31 (25.2)	14 (11.4)
Upper respiratory tract infection	22 (17.9)	0
Pneumonia	15 (12.2)	7 (5.7)
Urinary tract infection	11 (8.9)	4 (3.3)
Sinusitis	11 (8.9)	2 (1.6)
TEAEs of interest		
Pneumocystis jirovecii pneumonia	6 (4.9)	5 (4.1)
CMV infection reactivation	6 (4.9)	2 (1.6)
CMV infection	4 (3.3)	0

Administration of antibacterial and/or antiviral agents for infection prophylaxis was permitted for patients at increased risk of infection in accordance with local standard of care practice and/or institutional guidelines AE=adverse event; CMV=cytomegalovirus; IgG=immunoglobin G; IVIG=intravenous immunoglobin; MedDRA=Medical Dictionary for Regulatory Activities Terminology; TEAE=treatment-emergent adverse event

a Includes preferred terms in COVID-19 (narrow) standardized MedDRA queries

FDA's Breakthrough Designation

- Talquetamab is a novel first-in-class, off-theshelf, T-cell redirecting bispecific antibody directed against a new antigen target called GPRC5D^{1,2}
- GPRC5D is a novel antigen target in myeloma that is highly expressed on malignant plasma cells with limited expression in normal human tissues,³⁻⁶ including hematopoietic stem cells⁷
- Talquetamab has shown an ORR of 64–70% with QW and Q2W dosing in the MonumenTAL-1 study (NCT03399799/NCT04634552)⁸
- Updated results from the MonumenTAL-1 study are presented, including all patients treated at each RP2D for the first time, as well as a cohort of patients with prior CAR-T cell or bispecific antibody treatment

Phase 1 experience – 232 pt, 70% ORR and 10.2m median PFS Chari et al N Engl J Med. 2022 Dec 15;387(24):2232-2244

ORR 63% 72% prior CART 44% prior bispecific

RP2D 0.4 mg/kg QW SC Prior anti-BCMA ADC treatment allowed T-cell redirection therapy naive

(Phase 1 [n=21] + Phase 2 [n=122]: N=143)

RP2D 0.8 mg/kg Q2W SC Prior anti-BCMA ADC treatment allowed T-cell redirection therapy naive

(Phase 1 [n=36] + Phase 2 [n=109]: N=145)

Prior T-cell redirection (QW and Q2W) Previously exposed to T-cell redirection therapies Dosed with either 0.4 mg/kg weekly SC or 0.8 mg/kg Q2W SC

(Phase 1 [n=17] + Phase 2 [n=34]: N=51)

Hematologic adverse events

AEs (≥20% of any RP2D cohort), n (%)	0.4 mg/k (n=* mFU, 11.0	g SC QW* (43) months ^s	0.8 mg/kg SC Q2W= (n=145) mFU, S.1 months ^c	
	Any Grade	Grade 3/4	Any Grade	Grade 3/4
Anemia	(64 (44.8)	45 (31.5)	57 (39.3)	36 (24.8)
Neutropenia	49(34.3)	-44 (30.B)	41 (28.3)	32 (22.1)
Lymphopenia	40 (28.0)	37 (25.9)	38 (26.2)	37 (25.5)
Thrombocytopenia	39 (27.3)	29 (20.3)	39 (26.9)	24 (16.6)

Most high-grade AEs were cytopenias

· Cytopenias were generally limited to the first few cycles

AEs (220% of any RP2D cohort). n (%)	0.4 mg/kg SC QW= (n=143) mFU, 11.0 months ^b		0.8 mg/kg SC Q2W* (n=145) mFU, 5.1 months*	
	Any Grade	Grade 3/4	Any Grade	Grade 3/4
CRS	113 (79.0)	3 (2,1)	105 (72.4)	1 (0.7)
Skin-related AEs#	(80 (55,9)	Ø	98 (67.6)	1 (0.7)
Nail-related AEst	74 (51.7)	۵	63 (43.4)	0
Dysgmusik/	69 (48,3)	NA	67 (46.2)	NA
Rash-related AEst	56 (39.2)	2(1.4)	39 (26.9)	815.51
Weight decreased	57 (39.9)	312.11	47 (32.4)	2(1.4)
Pyreicia	53(37.3)	412.80	35 (24.1)	1 (0.7)
Astheriia:	37 (25.9)	3(Z1)	13-(9.0)	2(1.4)
Dry mouth	36 (25.2)	0	53 (36.6)	0
Distribea	34 (23.8)	3(2.1)	32 (22.1)	0
Dysphagia	34 (23.8)	0	33 (22.8)	3(2.1)
Fatigue	32 (22.4)	5 (3.5)	29 (20.0)	1 (0.7)
Decreased appente	25(17.5)	2 (1.4)	29 (20.0)	2 (1.4)

Infections

- At 0.4 mg/kg QW and 0.8 mg/kg Q2W:
 - Infections occurred in 57.3% and 50.3%
 - + Grade 3/4 in 16.8% and 11.7%
- 5 (3.5%)[#] and 4 (2.8%)^e patients had opportunistic infections
- 13 (9.1%) and 16 (11.0%) patients had COVID-19
- Grade 3/4 in 0.7% and 2.1%
- 2 patients died from COVID-19
- 13.3% and 9.7% of patients received IVIg, respectively.
 - Low rates of grade 3/4 nonhematologic AEs were observed
 - Low rates of discontinuation due to AEs were observed with QW (4.9%) and Q2W (6.2%) schedules
 - Most common AEs were CRS, skin-related events, nail-related events, and dysgeusia
 - Rates of high-grade skin, nail, and rash-related events were low
 - Dysgeusia was managed with supportive care, and at times with dose reduction
 - At 0.4 mg/kg QW and at 0.8 mg/kg Q2W,
 - 8.4% and 13.8% had dose delays due to AEs
 - 14.7% and 6.2% had dose reductions due to AEs
 - At time of data cut-off, no patients in these cohorts died due to drug-related AEs

- Treatment at both doses led to durable responses
 - Median DOR not reached for those patients who achieved \geq CR

mPFS: 7.5 months (95% CI: 5.7-9.4; 33% censored)

11.9 months (95% CI: 8.4-NE; 61% censored)

10 trials Infections with bispecific antibodies

28%

Neutropenia #

39%

Infections #

790 patients

The incidence of specific infections related to BsAbs therapy.

BCMA vs Non-BCMA incidence of all grades and G3/4 infections and neutropenia.

17%

Infections G3-4 #

1% 129 5% 12% Pneumonia COVID-19 CLABSI UTI E CMV PIP

Adenoviral pneumonia Aspergillus+ Influenza

PML G4

Sepsis

Adenoviral hepatitis

Hypogamaglobulinemia 48.5%

BCMA Non-BCMA Mazahreh F et al ASH 2022, Abstract 1909

Neutropenia G 3-4

24%

100% 95% 90% 85%

80%

75% 70% 65% 60% 55% 50% 45%

40%

35% 30% 25%

20% 15%

10%

5%

0%

Bispecific antibodies

BCMA-CD3

Teclistamab Elranatamab

GPRC5D-CD3 Talquetamab

Antibody_drug conjugates

CD38-attenuated IFNα Modakafusp alfa

Modakafusp alfa is a first-in-class, innate immunity enhancer that functions through targeted next-generation IFN signaling

Modakafusp alfa is a first-in-class, immune-targeting, attenuated cytokine. It consists of 2 attenuated interferon (IFN) α 2b molecules genetically fused to the Fc portion of an anti-CD38 IgG4 monoclonal antibody (mAb), allowing targeted delivery of IFN α to innate and adaptive immune cells, as well as myeloma cells.

Vogl D et al ASH 2022, Abstract 565

First-in-human, phase 1/2 study of modakafusp alfa in heavily pre-treated patients with RRMM

"Not required for patients enrolled into the expansion phase

IMD, immunomodulatory drug, mAb, monoclonal antibody, MTD, maximum tolerated dose; OBD, optimal biological dose; PL proteasome inhibitor; QW, weekly; Q2/3/4W, every 2/3/4 weeks; RRMM, relapsed/refractory MM

Vogl D et al ASH 2022, Abstract 565

Modakafusp alfa 1.5 mg/kg Q4W (n=30) adverse events were primarily hematologic

- 26 (87%) patients have discontinued treatment; 19 (73%) due to PD and 4 (15%) due to TEAEs
- Median duration of exposure: 4 cycles (range: 1–24)
- Thrombocytopenia and neutropenia mainly occurred in cycles 1–2, with counts usually recovering over time
- One patient had a grade 3 bleeding event and remained on study for 6 cycles until progressing
- Four patients had grade 3 infections (pneumonia, n=4; sinusitis, n=1)
- Aside from IRRs, there were no constitutional or neuropsychiatric effects typical of IFNα therapy

*All-grade TEAEs reported in >25% of patients or at grade ≥3 severity in ≥10% of patients, excluding leukopenia. Percentages may not sum due to rounding.

PD, progressive disease, TEAE, treatment-omergent adverse event

Responses were observed with modakafusp alfa 1.5 mg/kg Q4W regardless of prior therapies or refractory status

Percentages may not sum due to rounding.

CR, complete response, MR, minimal response, ORR; overall response rate of ≥PR; PR, partial response, sCR, stringent CR; VGPR, very good partial response

Median PFS 5.7m Median duration of response 12.5m

Vogl D et al ASH 2022, Abstract 565

Safety and efficacy in the MTD cohort 3.0 mg/kg Q4W (n=7)

AST, aspartate aminotransferase

Study - 1.5 vs 3mg/kg ongoing

CELMoDs

CRL4^{CRBN} E3 ubiquitin ligase

Table 1. Prior therapies

	All patients (N = 101)	
No. of prior therapies, median (range)	6 (3-15)	
Stem cell transplantation, n (%)	78 (77.2)	
Pl, n (%)	101 (100)	
IMiD agent,* n (%)	101 (100)	
POM as last prior regimen, n (%)	37 (36.6)	
Anti-CD38 mAb, n (%)	101 (100)	
Anti-BCMA therapy, n (%)	30 (29.7)	
Antibody-drug conjugate, n (%)	22 (21.8)	
CAR T cell therapy, n (%)	3 (3.0)	
T-cell engager, n (%)	8 (7.9)	

*LEN and POM.

BCMA, B-cell maturation antigen; CAR, chimeric antigen receptor; IMiD, immunomodulatory drug; LEN, lenalidomide; mAb, monoclonal antibody; PI, proteasome inhibitor; POM, pomalidomide.

Table 2. Summary of responses to MEZI + DEX

	All patients (N = 101)	Patients with plasmacytomas (n = 39)	Patients with prior anti-BCMA therapy (n = 30)
Response, n (%)			
ORR*	40 (39.6)	12 (30.8)	15 (50.0)
sCR	2 (2.0)	0	0
CR	3 (3.0)	2 (5.1)	1 (3.3)
VGPR	18 (17.8)	6 (15.4)	7 (23.3)
PR	17 (16.8)	4 (10.3)	7 (23.3)
MR	8 (7.9)	0	1 (3.3)
SD	38 (37.6)	21 (53.8)	11 (36.7)
PD	10 (9.9)	4 (10.3)	3 (10.0)
NE/Missing	5 (5.0)	2 (5.1)	0
DOR, median (95% CI), months	8.3 (5.4-NR)	NR	6.9 (4.0-NR)
PFS, median (95% Cl), months	4.6 (3.2-6.3)	3.7 (2.3-4.9)	5.4 (2.1-9.4)

^aDefined as PR or better.

BCMA, B-cell maturation antigen; CI, confidence interval; CR, complete response; DEX, dexamethasone; DOR, duration of response; MEZI, mezigdomide; MR, minimal response; NE, not evaluable; NR, not reached; ORR, overall response rate; PD, progressive disease; PFS, progression-free survival; PR, partial response; RRMM, relapsed/refractory multiple myeloma; sCR, stringent complete response; SD, stable disease; VGPR, very good partial response.

Richardson P et al ASH 2022, Abstract 568

Conclusions

- Personalizing therapy remains important
 - High-risk, frail etc
- Therapies with new modes of actions show impressive response rates in RRMM
 - Balance efficacy and toxicity
 - CRS, infections etc
- Determine the most appropriate place in disease to use
- Determine the day to day practicalities of how to introduce therapies into clinical practice

Acknowledgements

• My colleagues who kindly shared their slides

THANK YOU

