

Initial Experience with an Electron FLASH System

Kyuhak Oh, Ph.D and Su-Min Zhou, Ph.D

Department of Radiation Oncology

- Great Plains IDeA-CTR-Pilot Project Program
- University of Nebraska Collaboration Initiative Program.

- What is the FLASH RT?
- eFLASH System Commissioning in Norfolk
- eFLASH Research at UNMC

What is the FLASH RT?

Definition of FLASH Therapy

- Ultra-high dose rate radiation
 (>40 Gy/s) that is a thousand
 times faster than conventional
 dose rate radiation
- Reducing radiation induced normal tissue side effects
- While maintaining similar tumor control

Beam Characteristics	CONV	FLASH
Dose Per Pulse Dp	~0.4 mGy	~1 Gy
Dose Rate: Single Pulse D _p	~100 Gy/s	~10 ⁵ Gy/s
Mean Dose Rate: Single Fraction D _m	~0.1 Gy/s	~ 100 Gy/s
Total Treatment Time T	~days/minutes	< 500 ms

Muhammad et al. (2020)

Moekli et al. (2022)

History of FLASH Radiation Therapy

FLASH Effect

Vozenin et al. (2019)

Favaudeon et al. (2014)

Pre-clinical and Clinical Evidence

System	Author	Author Year	Author Year	Irradi	iation	Modality	mod	lels	Endpoint(s)	N	lain findings*
			FLASH-RT	CONV-RT	ofradiation	Tumor	Normal tissue		Tumor	Normal tissue	
Brain	Montay-Gruel P (26)	2020	12.5×103 -5.6×106 Gy/s	0.1Gy/s	electron	mice (glioblastoma)	1	tumor growth;cognitive function	similar antitumor effect	protective effect	
	Montay-Gruel P (23)	2019	>100 Gy/s	0.07-0.1 Gy/s	electron	-	mice	cognitive function;ROS, neuronal structure, synaptic protein, neuroinflammation	3	fully preserved	
	Simmons DA (24)	2019	200, 300Gy/ s	0.13 Gy/s	electron	17	mice	cognitive function, neurodegeneration, neuroinflammation		protective effect	
	Montay-Gruel P (21)	2018	37 Gy/s	0.05 Gy/s	X-ray	-	mice	cognitive function, Cell proliferation, GFAP	-	protective effect	
	Montay-Gruel P (20)	2016	0.1,1,3,10,3 s, 5.6	0, 100,500 Gy/ MGy/s	electron	e	mice	cognitive function	-	protective effect above 30 Gy/s fully preserved above 100 Gy/s	
Intestine	Venkatesulu BP (28)	2019	35Gy/s	0.1 Gy/s	electron		mice	toxicity, survival	-	No protection effect	
	Billy W. Loo (9)	2017	210 Gy/s	0.05 Gy/s	electron		mice	survival	-	protective effect	
Lung	Fouillade C (29)	2020	40-60GY/S	?	electron		mice	cell proliferation, DNA damage, inflammatory genes		protective effect	
	Buonanno M (22)	2018	0.025 Gy/s	- 1500 Gy/s	proton	0	human lung fibroblasts	cell survival, b-gal, TGFb		protective effect	
	Favaudona V (30)	2015	>40 Gy/s,	< 0.03Gy/s	electron	mice(lung tumor)	mice	tumor growth, apoptosis, lung fibrosis	similar antitumor effect	protective effect	
	Favaudon V (19)	2014	≥40 Gy/s	< 0.03Gy/s	electron	mice(lung tumor)	mice	tumor growth, early and late complications	similar antitumor effect	protective effect	
Skin	Bourhis J (10)	2019	166.7Gy/s	Ξ.	electron	patient (lymphoma)	-	tumor response; Soft tissue toxicity	complete response	grade 1 epithelitis, grade 1 oedema	
	Vozenin MC (27)	2018	300 Gy/s	0.083 Gy/s	electron	cat (squamous carcinoma	pig	skin toxicity, PFS	PFS at 16 months was 84%	protective effect	
Blood	Chabi S (25)	2020	200Gy/S	<0.072 Gy/S	electron	mice (leukemia)	mice	tumor growth, normal hematopoiesis	similar antitumor effect	protective effect	
Other	Adrian G (31)	2020	600 Gy/s	0.233 Gy/s	electron	prostate cancer cells		survival	flash effect depends on oxygen concentration		
	Beyreuther E (32)	2019	100 Gy/s	0.083 Gy/s	proton	1.50	zebrafish embryo	survival		Similar toxicity except for pericardial edema at one dose point(23Gy)	

FLASH increased normal tissue sparing compared to conventional dose rate Better tissue sparing

•

- with increasing dose rates
- Tumor control was the same or better with
 Flash compared to
 conventional dose rate

FLASH-RT, FLASH radiotherapy; CONV-RT, conventional dose-rate radiotherapy; *Effects of FLASH-RT compared with CONV-RT.

eFLASH System Commissioning

Currently Used eFLASH system

Machine	Energy	Beam Output	Location	Reference
Oriatron eRT6 6 MeV		~200 Gy/s	100 cm SSD	Jaccard et al. (2017)
Elekta Precise	8 MeV	~1000 Gy/s	Wedge position (19 cm from target reference)	Lempart et al. (2019)
Varian Clinac 21EX	20 MeV	~900 Gy/s	lon chamber position	Schuler et al. (2017)
Varian Clinac 2100 C/D	10 MeV	310 Gy/s	isocenter	Rahman et al. (2021)
Experimental LINAC	200 MeV	117 Gy/s	Not given	McManus et al. (2020)
Research LINAC	7 or 9 MeV	>1000 Gy/s	Not given	Gomez et al. (2022)
IORT NOVAC11	5 or 7 MeV	~4000 Gy/s	Not given	Di Martino et al. (2020)
IntraOp Mobetron	6 or 9 MeV	>800 Gy/s	17.3 cm SSD	Moeckli et al. (2021)
IORT NOVAC7 7 MeV		~540 Gy/s	1.6 cm SSD	Felici et al. (2020)
Eleckta Synergy 6 MeV		~633 Gy/s	13 to 15 cm SSD	Xie et al. (2022)
Varian Clinac iX	9 or 16 MeV	~20000 Gy/s	Internal monitor chamber	Szpala et al. (2021)
Varian Clinac 21EX	16 MeV	~2650 Gy/s	Monitor ion chamber	Poirier et al. (2021)
Kinetron LINAC	4.5 MeV	60 Gy/s	Not given	Favaudon et al. (2014)

- Several research laboratories have modified linear accelerators to produce ultra-high dose rates to study the FLASH effect.
- However, these custom linacs are scarce and resource intensive.
- Each FLASH machine has different energy level up to 200 MeV and different instantaneous dose rate up to 20000 Gy/s.

Unique Collaboration Structure

 The FLEX system is located in Norfolk, NE. about two hours (~113 miles) away from our main campus.

Timeline of UNMC eFLASH Project

Installation for 1st Clinac-FLEX machine

Dose Rate > 180 Gy/s at isocenter under a 10x10 cm² board beam condition Maximum Dose Rate > 680 Gy/s at gantry head under a 10x10 cm² board beam condition

* FLEX: FLASH Research Extension

Radiation Safety for eFLASH Facility

Survey Process

Gantry = 0°, No Scatter

Dose Point	Dose Rate
Vault Door	30 cm = 1.0 mR/hr
Console	Highest=1.2 mR/hr

Gantry = 270°, No Scatter

Dose Point	Dose Rate
Vault Door	30 cm = 3.6 mR/hr
Console	Highest = 6 mR/hr
West Wall (Outside)	Highest=50 mR/hr

Gantry = 90°, No Scatter & Scatter

Dose Point	Dose Rate, No Scatter	Dose Rate, Scatter
Vault Door	30 cm = 1 mR/hr	30 cm = 0.5 mR/hr
Console	Highest=3.2 mR/hr	Bkgallareas
Block Room Hallway OutsideBlock Room	30 cm @ Wall = 150 mR/hr Hallway Outside Room; 38 mR/hr	30 cm @ Wall = 34 mR/hr

Gantry = 180°, No Scatter

Dose Point	Jaws Open (Photon)
Vault Door	30 cm = 0.4 - 0.6 mR/hr
Console	Highest=2.4 mR/hr
Block Room (East)	Highest = 1.4 mR/hr
Break Room (South)	Bkg
Outside (West)	Highest=0.6 mR/hr
North Wall of Vault	Bkg
Supply Room (Above Vault)	Floor = 30 mR/hr 3 ft Above Floor = 16 mR/hr

Safety Report

eFLASH Research at UNMC

System Characterization

Output Factor Vs. Field Size

Monte Carlo Simulation

Profiles 120 Measurement ••• MC Simulation 100 80 6 × 6 cm Applicator Profile (%) 60 10 × 10 cm² Applicator 40 15 × 15 cm² Applicator 20 -100 -50 50 0 100 Off Axis (mm)

PDDs

Applicator Size	R ₅₀ (cm)				
	Measurement	Monte Carlo Simulation			
6 × 6 cm²	6.43	6.46			
10 × 10 cm ²	6.49	6.51			
15 × 15 cm²	6.55	6.54			

eMC Commissioning in Commercial TPS

Applicator Size	6 × 6 cm²				10 × 10 cm ²			
Method	eMC		Measurement		eMC		Measurement	
Depth (cm)	1	3	1	3	1	3	1	3
FWHM (cm)	6.1	6.3	6.1	6.3	10.2	10.4	10.2	10.4
Flatness (%)	3.0	9.6	3.1	9.2	3.2	5.5	3.3	4.9
Symmetry (%)	1.0	1.9	0.4	1.9	0.6	0.0	-0.2	-0.3
Penumbra (mm)	6.3	11.2	6.1	11.1	7.2	12.0	7.5	12.0

Treatment Planning Study

	Structure	Constraint	Conventional Plan	FLASH Plan
Torgot	GTV	V _{95%}	100 %	100%
larget	СТV	V _{85%}	100 %	100 %
	Spinal cord	D _{max} < 45 Gy	1.1 Gy	1.4 Gy
	Lung	V _{20Gv} <= 30%	0 %	0 %
OAR		V _{25Gv} <= 10%	0 %	0 %
	Heart	V _{30Gv} <= 46%	0 %	0 %
		D _{mean} < 26 Gy	0.01 Gy	0.02 Gy

Stability Test

Measurement over 3-month period

Ionization Chamber Recombination

Cross-calibration of the radiochromic film against parallel-plane chamber or OSLD Ion collection efficiency for the plane-parallel chamber as a function of dose rate

Logistic Model: Petersson et al. (2017)

Other Dosimetry Systems

Plastic Scintillator – W2 10 -1X1 fiber / 43 pulses 1X1 fiber / 10 pulses Dose-per-pulse (Gy) / Plastic Scintillator 1X1 fiber / 5 pulses 1X1 fiber / 1 pulse 1X3 fiber / 43 pulses 1X3 fiber / 1 pulse 1 . 0.1 1 0.01 -0.01 0.1 10 Dose-per-pulse (Gy) / Radiochromic Film

Dose-per-pulse (Gy) / Radiochromic Film

Limitation / Future Work

Limitation

- Coarse adjustment of the selected delivering dose set by the beam pulse counter (the number of pulses)
- No accurate real-time monitoring

Future Work

• Dosimetry system development under

the eFLASH environment

• eFLASH irradiation of small animal using the FLEX machine (Mice)

Conclusion

- The University of Nebraska Medical Center (UNMC), Faith Regional Health Services, and Varian collaborated to implement Varian's FLEX conversion for eFLASH research.
- This system is capable of delivering the ultra-high dose rate electron beam that is much faster than conventional dose rate beam.
- Dosimetric characteristics of the 16 MeV eFLASH and conventional electron beams were similar for all applicators and field sizes evaluated in this study except for the profiles because of the difference in the scattering foil designs.
- Clinac-FLEX system has the potential to significantly increase the access to ultra-high dose rate capabilities for scientists and clinicians and further promote multi-institutional research on the FLASH effect.

Acknowledgements

UNMC Medical Physic Group

Su-Min Zhou, Ph.D (PI)

Kyuhak Oh, Ph.D

Kyle Gallagher, Ph.D

Megan Hyun, Ph.D

Diane Schott, Ph.D

Yu Lei, Ph.D

Shuo Wang, Ph.D

Ellie Bacon, M.S

Sumudu Katugampola, Ph.D

UNMC Biology Group

Ying Yan, Ph.D (PI)

Brendan Graff

Christopher Jenkins

Radiation Safety

Frank Rutar, MS

Varian Service Engineer

Schmidt, Marty

Under the leadership of Dr. Charles Enke

10

Thank You!

DURHAM RESEARCH CENTER

