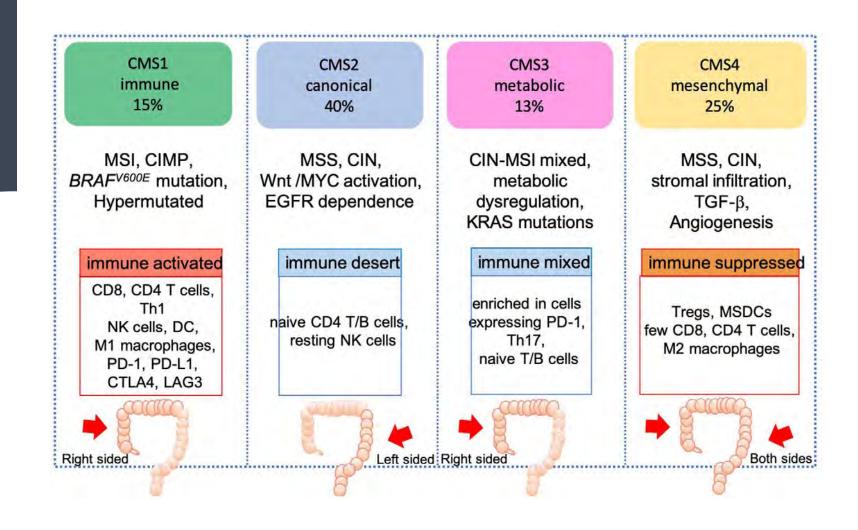
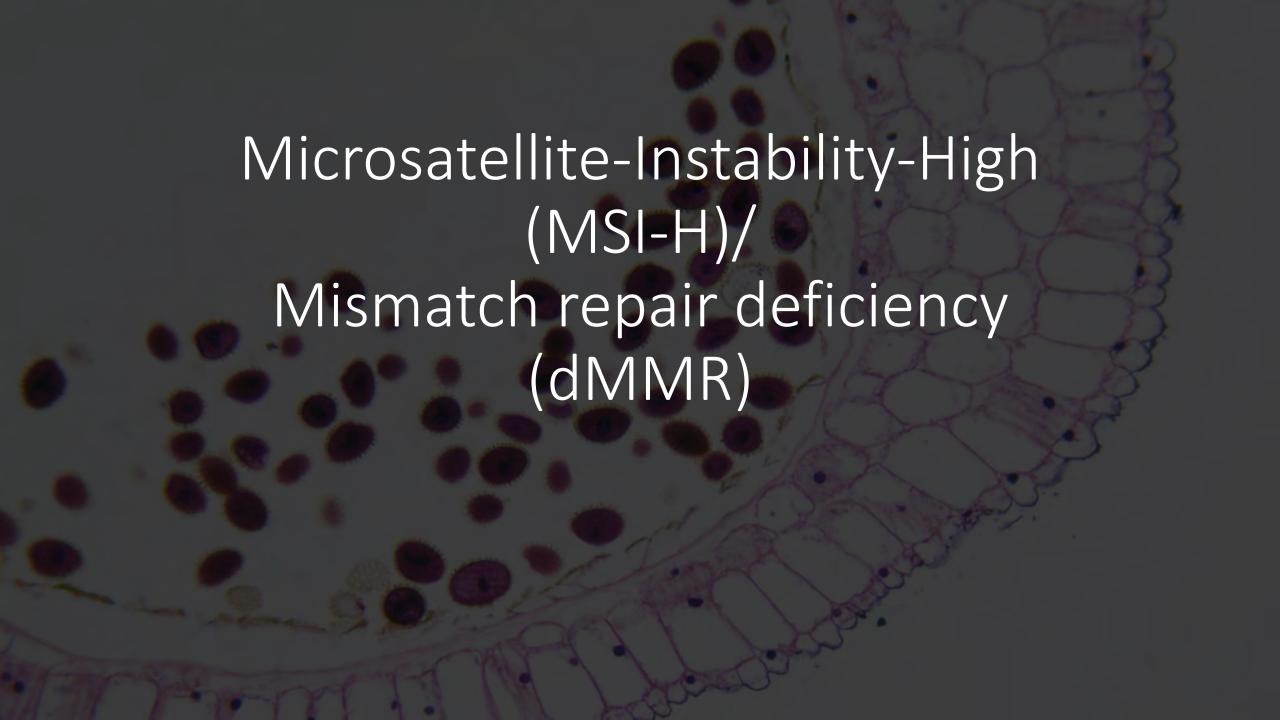
Immunotherapy in colon cancer

Mridula Krishnan, MD


Hematology Oncology


University of Nebraska medical center

Objectives

- Role of immunotherapy in metastatic dMMR and MSI-H advanced CRC
- Role of Neoadjuvant immunotherapy is this ready for prime time?

Molecular classification of colon cancer

Introduction

- High microsatellite instability (MSI-H)/deficient mismatch repair (dMMR) phenotype is a distinct molecular signature across gastrointestinal cancers
- Highly immunogenic and heavily infiltrated by immune cells
- Uniquely vulnerable to therapeutic strategies enhancing immune antitumor response such as checkpoint inhibitors

Mechanism of dMMR

- Germline mutation of one of the genes 'Lynch syndrome) 25%
- Rest are sporadic (hypermethylation of MLH1 promoter gene)
- Right-sided tumors tend to be sporadic while rectal tumors tend to be associated with Lynch syndrome
- 15–20% of cases in stage II, 10–15% in sage III, and 4–5% in stage IV colon cancer

Metastatic disease with dMMR/MSI-H

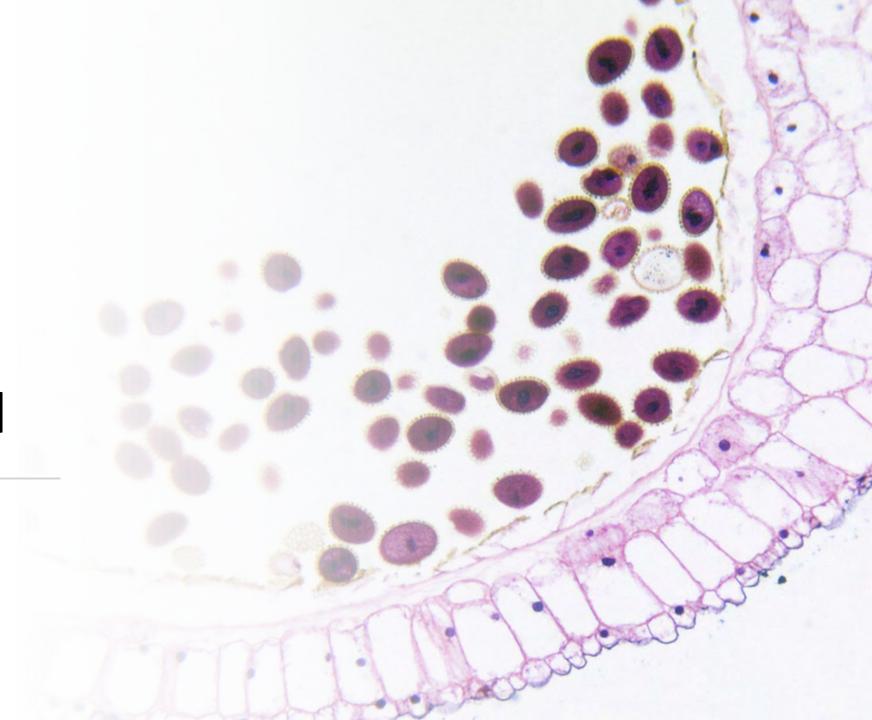


TABLE 2. Immune Checkpoint Inhibitors (Anti-PD-1 With or Without Anti-CTLA-4) and MSI/dMMR Colorectal Cancer

	Previous Systemic Treatment	No. of Patients	CR (%)	PR (%)	SD (%)	PD (%)	NE (%)	1-Year PFS (%)	1-Year OS (%)	3-Year PFS (%)	2- or 3-Year OS (%)	Follow- up Time (Months)
KEYNOTE-016 ⁶												
Pembrolizumab	≥ 1	28	11	46	32	4	7	_	-	-	-	8.7
KEYNOTE-164 ¹³												
Pembrolizumab, cohort A	≥ 2	61	3	30	18	46	3	34	72	42*	55*	31
Pembrolizumab, cohort B	≥ 1	63	8	25	24	40	3	41	76	37*	63*	24
KEYNOTE-177 ^{19,22}												
Pembrolizumab	0	153	13.1	32	19.6	29.4	5.9	55	78	42**	61**	44.5
Chemotherapy with or without		154	3.9	29.2	42.2	12.3	12.3	38	74	11**	50**	44.4
bevacizumab or cetuximab												
CheckMate-142 ^{12,16,24}												
Nivolumab	≥ 1	74	9	24	31	31	5	44	73		_	21
Nivolumao pius ipilimumao	≥ 1	119	13	DZ.	21	12	2	/1	80	60	/1.4	50.9
Nivolumab plus ipilimumab	0	45	13	56	16	13	2	77	83	74*	79*	29.0
NIPICOL ¹⁷												
Nivolumab plus ipilimumab	≥ 2	57	19	40	30	5	3	73	84			18.1
GARNET ¹⁴												
Dostarlimab	≥ 1	69	36		_				_		_	_

Abbreviations: MSI, microsatellite instability; dMMR, mismatch repair deficiency; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; NE, not evaluable; PFS, progression-free survival; OS, overall survival.

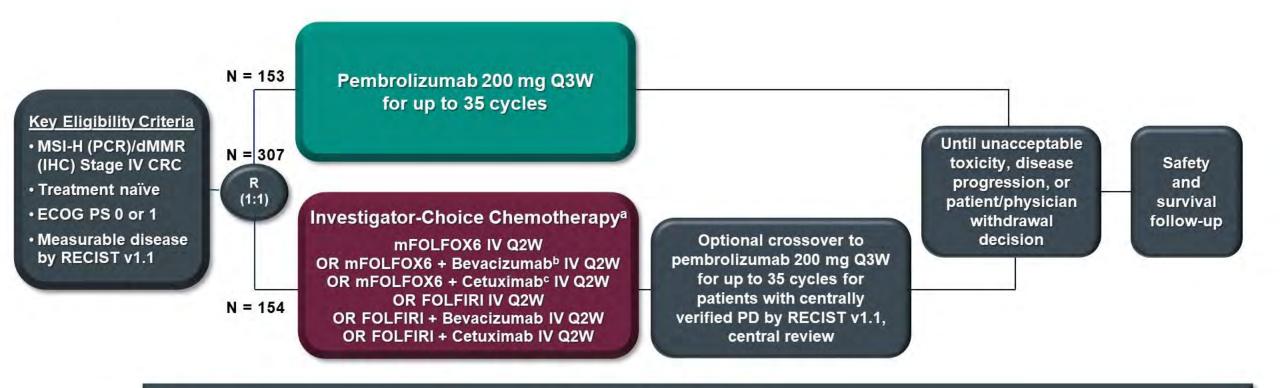
2- or

Median

^{*}Two-year survival rate.

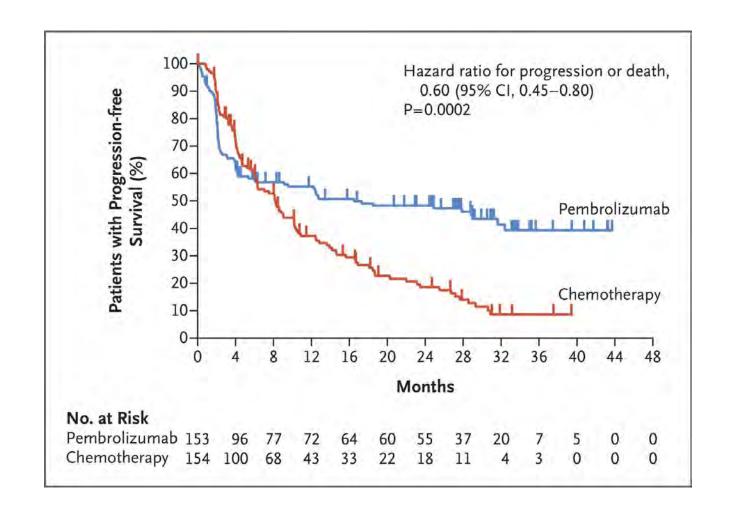
^{**}Three-year survival rate.

First approval for front line therapy in CRC

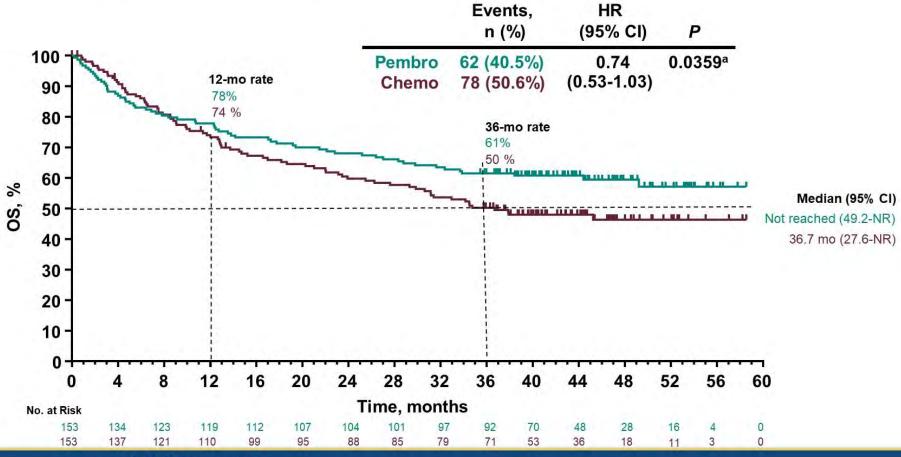

ORIGINAL ARTICLE

Pembrolizumab in Microsatellite-Instability–High Advanced Colorectal Cancer

Thierry André, M.D., Kai-Keen Shiu, F.R.C.P., Ph.D., Tae Won Kim, M.D., Ph.D., Benny Vittrup Jensen, M.D., Lars Henrik Jensen, M.D., Ph.D., Cornelis Punt, M.D., Ph.D., Denis Smith, M.D., Rocio Garcia-Carbonero, M.D., Ph.D., Manuel Benavides, M.D., Ph.D., Peter Gibbs, M.D., Christelle de la Fouchardiere, M.D., Fernando Rivera, M.D., Ph.D., et al., for the KEYNOTE-177 Investigators*

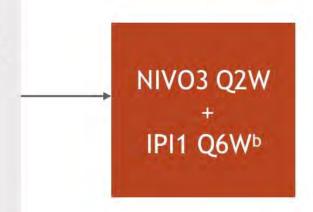

KEYNOTE-177 Study Design

(NCT02563002)



- Dual-primary endpoints: PFS per RECIST v1.1, BICR; OS
- Secondary endpoints: ORR per RECIST v1.1 by BICR, PFS2, HRQoL, safety
- Tumor response assessed at week 9 and Q9W thereafter per RECIST v1.1 by BICR

PRESENTED AT:


Overall Survival

CheckMate 142 NIVO3 + IPI1 1L cohort study design

 CheckMate 142 is an ongoing, multicohort, nonrandomized phase 2 trial evaluating the efficacy and safety of NIVO-based therapies in patients with mCRC^a

- Histologically confirmed metastatic or recurrent CRC
- MSI-H/dMMR per local laboratory
- No prior treatment for metastatic disease

Primary endpoint:

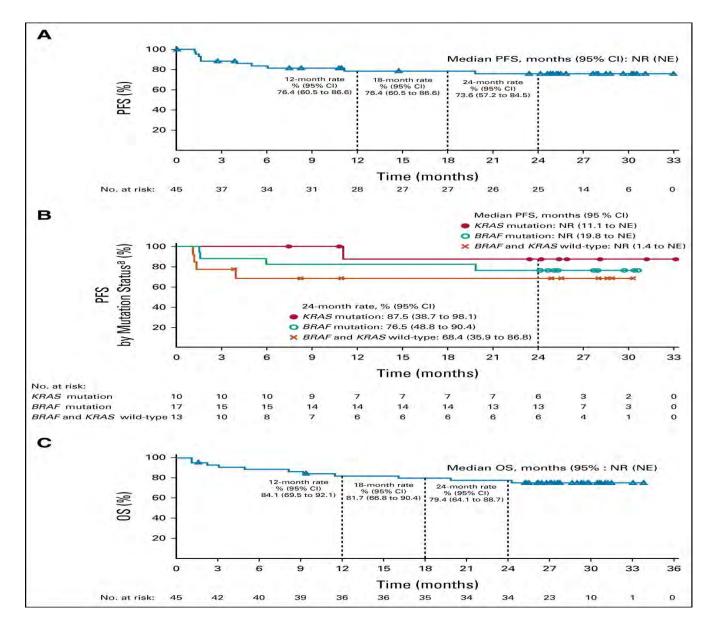
 ORR per investigator assessment (RECIST v1.1)

Other key endpoints:

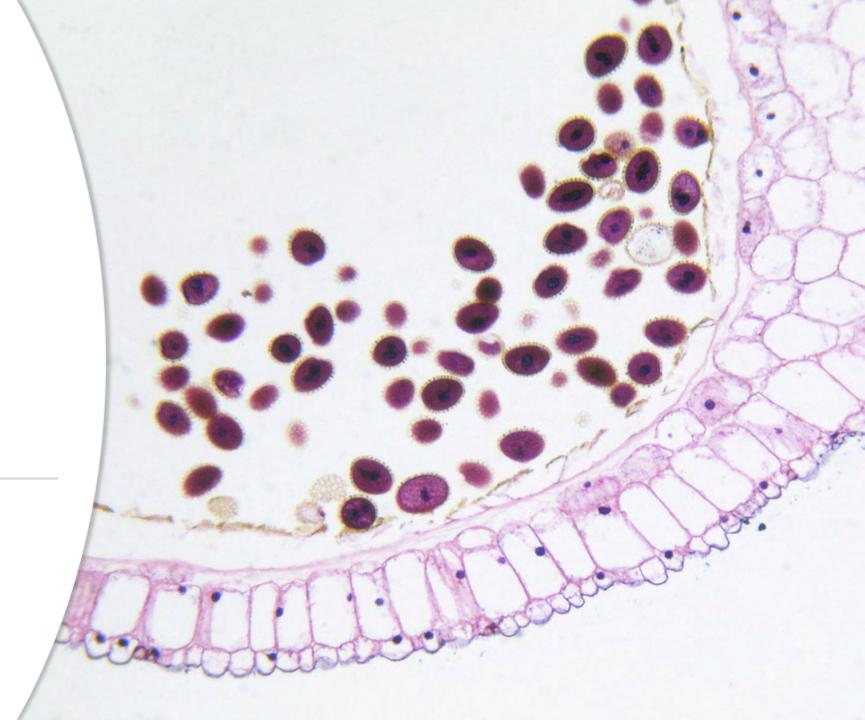
 ORR per BICR, DCR,^c DOR, PFS, OS, and safety

 At data cutoff (October 2019), the median duration of follow-up was 29.0 months (range, 24.2-33.7)^d

aClinicalTrials.gov number, NCT02060188. bUntil disease progression or discontinuation in patients receiving study therapy beyond progression, discontinuation due to toxicity, withdrawal of consent, or the study end. Patients with CR, PR, or SD for ≥ 12 weeks divided by the number of treated patients. Median follow-up was defined as time from first dose to data cutoff.


BICR, blinded independent central review; CR, complete response; CRC, colorectal cancer; DCR, disease control rate; DOR, duration of response; NIVO3, nivolumab 3 mg/kg; IPI1, ipilimumab 1 mg/kg; PR, partial response; SD, stable disease.

Lenz et al. JCO 2021



Mohamed E. Salem, MD

Chemo plus immunotherapy? Ongoing trials

Early stage/locally advanced MSI high CRC

- A number of retrospective studies and post hoc analysis have evaluated the role of MMR as a prognostic and predictive biomarker in stage II–III CRC
- Favorable prognosis of stage II dMMR colon cancer and lack of benefit from adjuvant chemotherapy
- Oxaliplatin-based chemotherapy may be considered for high-risk stage II disease
- Three to six months of oxaliplatin-based chemotherapy per usual standards is recommended for patients with dMMR stage III colon cancer

Table 3. Predictive and prognostic value of MSI from two ACCENT pooled analysis.

	Treatment	5-year OS		HR	95% CI	p		
		dMMR	pMMR					
Stage II								
Sargent et al. ⁵⁰	Surgery alone (n=307)	90%	78%	0.27	0.10-0.74	0.011		
	5-FU (n=1155)	88%	87%	0.87	0.61-1.26	0.469		
Stage III								
Sargent et al. ⁵⁰	Surgery alone (n = 264)	59%	54%	0.69	0.35-1.36	0.283		
	5-FU (n = 2723)	77%	71%	0.79	0.65-0.97	0.023		
Cohen et al. ⁵¹	Surgery alone (n=202)	73%	53%	0.58	0.21-1.63	0.2648		
	FP-based (n = 204)	74%	67%	0.60	0.28-1.25	0.1459		
	FP + oxaliplatin (n = 4250)							
	N1	89.9%	87.1%	0.65	0.45-0.93	0.0132		
	N2	69.1%	72.1%	1.22	0.94-1.59	0.1403		
	Low risk*	91.6%	88.7%	0.63	0.42-0.95	0.0186		
	High risk*	69.8%	72.6%	1.13	0.88-1.45	0.3424		
	Surgery ± FP-based	dMMR: 73%	73% versus 74% (n = 49)		0.34-4.81	0.7218		
	FP-based ± oxaliplatin	dMMR: 75.6% versus 85.0% (n = 185)		0.52	0.28-0.93	0.0254		

*Low risk: T1-3N1, high risk: T4 and/or N2.
95% CI, 95% confidence interval; dMMR, deficient mismatch repair; FP, fluoropyrimidine; HR, hazard ratio; MSI, microsatellite instability; OS, overall survival; pMMR, proficient mismatch repair; 5-FU, 5-fluorouracil.

What about neoadjuvant immunotherapy in CRC?

- NICHE phase II trial 21 patients with MSI/dMMR CRC received dual checkpoint ICI 4 weeks proir to surgery
- Path CR was observed in 20/20 patients (CI: 86-100%)

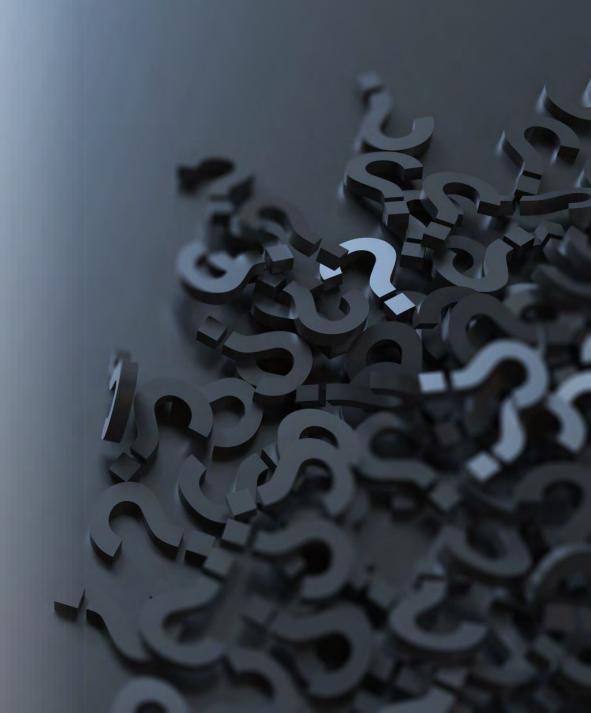
Neoadjuvant Pembrolizumab in Localized Microsatellite Instability High/Deficient Mismatch Repair Solid Tumors

```
Check for updates

Kaysia Ludford , MD<sup>1,2</sup> , Won Jin Ho , MD<sup>3</sup>; Jane V. Thomas , MD<sup>2</sup>; Kanwal P.S. Raghav , MBBS<sup>2</sup>; Mariela Blum Murphy , MD<sup>2</sup>; Nicole D. Fleming , MD<sup>4</sup>; ...
```

35 patients54% colon23% rectal

14 underwent surgery and 70% had path CR


ORIGINAL ARTICLE

PD-1 Blockade in Mismatch Repair–Deficient, Locally Advanced Rectal Cancer

Andrea Cercek, M.D., Melissa Lumish, M.D., Jenna Sinopoli, N.P., Jill Weiss, B.A., Jinru Shia, M.D., Michelle Lamendola-Essel, D.H.Sc., Imane H. El Dika, M.D., Neil Segal, M.D., Marina Shcherba, M.D., Ryan Sugarman, M.D., Ph.D., Zsofia Stadler, M.D., Rona Yaeger, M.D., et al.

- Patients with stage II and III dMMR rectal cancer received neoadjuvant Dostarlimab for a total of 6 months
- Patients with cCR underwent a watch and wait strategy
- Among 11 paitents, the cCR rate was 100% with single agent Dostarlimab

- What is the best regimen to use?
- Optimal duration of therapy
- How are we sure of path CR?
- Can we also resect metastasis if limited to one site?
- Will all these questions be answered by a phase 3 trial for locally advanced rectal cancers?

Important take home points

- All CRC's should be tested for MSI H/dMMR status
- ICI's have significantly impacted treatment of MSI high disease
- Some patients may have primary resistance to ICI therapy
- Neoadjuvant ICI should be considered for dMMR tumors