

Chronic Thromboembolic Pulmonary Hypertension (CTEPH

Ronald Zolty, MD, PhD, FACC

University of Nebraska Medical Center

September 29, 1012

Disclosures

Consultant

-Alnylam

-J&J

-Bayer

-United Therapeutics

Pulmonary Hypertension is a Disease of the Lung and Heart

Pulmonary hypertension (PH) has many different etiologies

PH typically leads to an increase in pulmonary vascular resistance (PVR) and high blood pressure in the lungs

The right side of the heart has to work harder to pump blood through the narrowed arteries

Eventually, the right heart becomes enlarged and consequently is less able to pump blood through the lungs ...

... leading to heart failure and death

Pulmonary Hypertension is a rapidly progressive, ultimately fatal condition

PH is classified into Five Groups

CTEPH, chronic thromboembolic pulmonary hypertension; COPD, chronic obstructive pulmonary disease; ILD, interstitial lung disease; HIV, human immunodeficiency virus. Simonneau G et al. J Am Coll Cardiol. 2009;54(1 suppl):S43–S54.

PH is Categorized Based on its Underlying Cause

PH is Categorized Based on its Underlying Cause

Hemodynamic Definition of PH

Normal mPAP 8-16 mmHg at rest

PH mPAP > 20 mmHg at rest

The Hemodynamic Definition of Precapillary PH has Changed Over Time

ESC/ERS=European Society of Cardiology/European Respiratory Society; WSPH=World Symposium on Pulmonary Hypertension; WU=Wood units. References: 1. Galiè N, et al. Eur Heart J. 2016;37(1):67-119. 2. Humbert M, et al. Eur Heart J. 2022;43(38):3618-3731. 3. Simonneau G, et al. Eur Respir J, 2019;53(1):1801913.

CTEPH: Introduction

- CTEPH is an important cause of PH that is commonly considered to be the consequence of an episode of acute PE
- Following acute PE, unresolved residual thrombus becomes organized and fibrosed, leading to ongoing obstruction to pulmonary blood flow
- Untreated (even on anticoagulation), this leads to progressive PH, RV dysfunction and death
- "Honeymoon period" after acute PE

What is **CTEPH**

- Vascular disorder characterized by:
 - Organized thrombotic obstructions in the pulmonary arteries
- It may include small-vessel vasculopathy that is indistinguishable from idiopathic PAH

- Defined by the following observations after 3 months of effective anticoagulation:
 - mPAP >20 mmHg
 - Mismatched perfusion defects

Galiè et al. Eur Heart J. 2009;30:2493–2537, Jaff et al. Circulation. 2011;123:1788–1830. Lang IM et al. N Engl J Med. 2004;350:2236–2238. McLaughlin VV et al. Circulation. 2009;119;2250–2294. Wilkens et al. Int J Cardiol. 2011;154S S54–S60.

CTEPH Introduction

Vascular obstructive lesion in acute PE (A) versus CTEPH (B)

Matthews DT, Hemnes AR. Pulmonary Circ 2016; 6(2): 145-154

CTEPH: Survival without treatment

mPAP 31-40 mmHg – 5 years survival 45% mPAP 41-50 mmHg – 5 years survival 33% mPAP > 50 mmHg – 5 years survival 14%

> Riedel et al, Chest 1982; 81: 151 Lewczuk et al, Chest 2001; 119: 818

Epidemiology

- Each year, approximately 600,000 individuals in the US have an acute PE
- Estimated incidence of CTEPH, after acute PE 0.5-4.0%
- The true incidence may be underestimated
- Based on a registry (2007-2009) including 679 patients from 16 European countries and Canada, histroy of acute PE was reported in nearly 75% of patients

Incidence of CTEPH after Episode of PE

Each year in the US, the annual number of new CTEPH cases is between 500 and 2500

Tapson VF, Humbert M Proc Am Thorac Soc 2006;3:564-567

Incidence of CTEPH after First Episode of PE

- In a prospective study follow-up study including 314 patients with PE, incidence of CTEPH was 3.8% within 2 years after a first episode of symptomatic PE
- 7/223 patients (5 patients in NYHA class II, 2 patients in NYHA class III
- None of the remaining patients developed CTEPH after 2 years

Pengo V, et al. N Engl J Med. 2004; 350:2257-64

Proposed annual incidence of CTEPH in USA

Pengo V, et al. N Engl J Med. 2004; 350:2257-64

Pathophysiology of CTEPH

V

CETPH Pathogenesis

- CTEPH results from persistent macrovascular obstruction and a vasoconstrictor response that lead to a secondary small vessel arteriopathy.
- Reductions in the pulmonary diameter due to thrombosis and vasoconstriction result in adverse vascular remodeling

Piazza et al NEJM 2011; 364:351-60

CTEPH: Histopathological Paradox

Tissue/vessels distal to occluded segment: normal Distal vessel distal to patent pulmonary arterial segment- small vessel abnormalities

Definition of CTEPH

- Hemodynamic measurements:
 - mPAP ≥ 20 mmHg
 - PWP ≤ 15 mmHg
 - PVR > 2 WU
- Chronic and organized thrombi/emboli in the pulmonary arteries (main, lobar, segmental, subsegmental)
- After at least 3 months of effective anticoagulation

CTEPH

- Incidence 0.5 to 4% after symptomatic PE
- Underdiagnosis
- In Europe, both genders are equally affected, whereas mostly women in Japan
- Median age is 63 years
- Median time of 14 months between symptom onset and diagnosis
- Only PH group that is potentially curable by pulmonary endarterectomy (PEA)
 - PEA is the only curative treatment

CTEPH: *Risk Factors*

- PE
- Ventriculoatrial shunt
- Infected pacemaker
- Splenectomy
- Cancer
- Antiphospholipid antibodies (in 20% of CTEPH pts)
- High levels of factor VIII (in 41% of CTEPH pts)
- ABO blood groups other than O
 - Non O blood type CTEPH vs PAH (88 vs. 56%)
- Elevated Lp (a)
 - CTEPH vs. PAH vs. Control (26.6 vs. 9.6 vs. 7.2 mg/dL)
- Protein C,S & fctor V Leiden deficiencies <1% of pts with CTEPH

Diagnostic strategy in CTEPH

CPET=cardiopulmonary exercise test CTPA computed tomography pulmonary angiography DSA digital substraction angiography MDT multidisciplinary team

CTEPH Diagnostic Imaging Algorithm

Lang et al JACC CardiovascularImaging 2010; 3:1287

Ventilation/Perfusion (V/Q) Scan

- In CTEPH, at least one segmental or larger mismatched ventilation-perfusion defects are present
- In Idiopathic PAH, perfusion scans are usually normal
- Cannot localize the extent of the disease
- Cannot determine surgical accessibility
- Conditions indistinguishable from CTEPH in V/Q
 - Extrinsic vascular compression from mediastinal adenopathy of fibrosis
 - Primary pulmonary vascular tumors (ie Angiosarcom)
 - Pulmonary veno-occlusive disease
 - Large vessel pulmonary vasculitis

V/Q Scan in CTEPH

Tanabe N et al Respiratory Investigation 2013; 51(3):134-146

Ventilation-Perfusion (V/Q) Scintigraphy is more Sensitive than CT Pulmonary Angiogram (CTPA) for the Diagnosis of CTEPH

			V/Q	CTPA			
	Group	Low probability	Intermediate probability	High probability	Negative	Positive	
CTEPH No CTEPH	A (n = 78) B (n = 149)	2 134	1 7	75 8	38 148	40 1	
			Sci				
	Indicator Sensitivity (%) Specificity (%) Accuracy (%)		V/Q (1)*	V/0	V/Q (2)†		
			97.4	9	96.2		
			90	g	94.6 95.2		
			92.5	g			
	NPV (%)		98.5	9	7.9	79.7	
	PPV (%)		83.5	9	0.3	97.6	
		ligh					

CTEPH CTA, MRI, and Imaging

- CTA Sensitivity of 51% compared with > 96% sensitivity of V/Q Scan
- With CTA filling defects are often not seen
- MRI is inferior to CT
- A normal V/Q scan virtually rules out CTEPH
- A normal CTA or MRI does not rule out a diagnosis of CTEPH

Pulmonary Angiograqphy

Definitive for the diagnosis and assessment of surgically correctable CTEPH or PBA Safe, even with severe PH Findings include webs, abrupt vascular cut-offs, ring-like stenoses, pouches

V

CTEPH rules

- A normal V/Q Scan virtually rules out CTEPH
- A normal CTA doe not rule put a diagnosis of CTEPH
- Right heart catheterization mPA > 20 mmHg, PW < 15 mmHg, PVR > 2 WU
- Pulmonary angiogram

CETPH Management Algorithm

Pulmonary Endarterectomy (PEA)

PEA cast and corresponding pulmonary angiogram

McNeil K, Dunning J. Heart 2007;93(9):1152-58

Pulmonary Endarterectomy (PEA)

- PEA is the only curative treatment
- Pionered at UCSD (San Diego): > 3000 cases of PEA
- Periprocedural mortality <2% to 5%
- Decision should be made by a CTEPH team (cardologist, pulmonologist, CT surgeon and radiologist)
- Should not be considered non-operable if not reviewed by at least 2 independent experienced PEA surgeons
- Reverse pulmonary vascular remodeling can occur
- Recurrent CTEPH after successful PEA is extremely rare

Pulmonary Endarterectomy (PEA)

- PEA is also considered in patients who have normal or nearly normal pulmonary hemodynamics at rest but in whom significant PH develops during exercise (Chronic thrombo-embolic pulmonary disease (CTEPD))
- No surgery for distal disease (sub-segmental)
- Occurrence of reperfusion lung injury due to loss of endothelial integrity
- Pulmonary (non-cardiogenic) edema to severe diffuse alveolar damage

Predictors of Surgical Sucess

- Prior history of pulmonary embolism and/or DVT
- "Honeymoon period" (period of months between acute embolic event and clinical symptoms of CTEPH
- Angiographic lesions located proximally in pulmonary arteries or lobar branches
- Correlation between PVR and anatomic obstruction
- Immediate postoperative PVR < 7.3 WU had better longterm outcomes than PVR > 7.3 WU

- The first series of balloon pulmonary angioplasty (BPA) was reported nearly 20 years ago by Feinstein et al. The technique has subsequently been refined in multiple centres in Japan and is now rapidly being adopted in Europe and the US
- BPA is an alternative therapy in selected patients who have inoperable disease due to distal surgically inaccessible disease or persistent or recurrent PH after PEA
- Successful BPA may reduce PA pressures, improve blood flow distribution and decrease RV afterload in CTEPH patients

- Meta-analysis suggested superiority of BPA when compared to riociguat (23 clinical trials including 1454 patients (631 with PBA vs 823 on riociguat) with greater improvements in exercise tolerance and pulmonary hemodynamics except for cardiac output ¹
- RACE trial included 124 patients randomised 1:1 to either BPA or riociguat. After 6 months PVR fell by 60% in the BPA group and 32% in the medical therapy group (p<0.001)²
- The secondary endpoints change in mPAP, mean right atrial pressure, N-terminal pro-brain natriuretic peptide (NT-proBNP) and functional class (FC) showed greater improvement in the BPA group, although 6-minute walking distance (6MWD) was not significantly different between the two groups ²
 - 1. Wang W. et al.. Clin Cardiol 2019;42:741–52
 - 2. Bosworth T. Balloon pulmonary angioplasty beats riociguat in randomized CTEPH trial. MDedge News 18 October 20

- Mortality 0-5.6%
- Reperfusion pulmonary injury or lung hemorrhage (2-23%) can be a fatal complication
- PA dissection or perforation 0-6.4%
- Limit dilatation to no more than 2-3 vessels per sitting
- IVUS and OCT to ensure that the maximal size is not >60-90% of the original size of the vessel diameter

- Mizoguchi et al performed BPA in 68 inoperable CTEPH
- All patients showed significant improvements in PAP, BNP levels and functional exercise capacity
- 66 patients were alive at 2.2 ± 1.4 years
- Follow-up at 1 year conformed improved angiographic appearance of the pulmonary arteries

Medical therapy

- CTEPH is inoperable in as many as 50% of cases
- Around 10-15% patients do not respond to PEA
- Patients left untreated have a poor prognosis
- Anticoagulation therapy should be continued for life
- Only one therapy approved by FDA for inoperable and postoperative patient with persistent PH: Riociguat
- IVC filter placement is not mandatory because of origin of clot may be other sites
- Riociguat, met the primary end point for nonoperable CTEPH or persistent/recurrent PH after PEA
- In the CTREPH trial, sc trepostinil conformed improvement in exercise capacity, hemodynamics and QOL at 6 months

Indication for Medical Therapy

- Where there is inoperable distal disease or co-morbidities that make PEA a high-risk option:
- As a therapeutic bridge to PEA
- Patients with persistent or residual PH after PEA

When Medical therapy in CTEPH

• Cannot do PEA

- distal disease
- too many or too severe co-morbidities (severe restrictive or obstructive lung disease)
- Persistent PH or recurrent PE post PEA
- Bridge to PEA (i.e too high PVR)

Medical therapy: Riociguat

Ghofrani HA et al. NEJM 2013;369:319-29

Medical therapy: Riociguat

V

Medical therapy: *Riociguat in CHEST-1 Riociguat significantly improved PVR*

N

Management strategy in CTEPH

Humbert M et al 2022 ESC/ERS Guidelines for the diagnosis and treatment of PH European Respiratory Journal 2022; DOI: 10.1183/13993003.00879-2022

Overlap in treatments/multimodality approaches in CTEPH

Multimodal CTEPH treatment

Humbert M et al 2022 ESC/ERS Guidelines for the diagnosis and treatment of PH European Respiratory Journal 2022; DOI: 10.1183/13993003.00879-2022

CTEPH: PEA vs. PBA vs. medical therapy

Inami T, Kataoka M, Shimura N et al ESC Congress 2013

Conclusions (1)

- CTEPH is an important complication of acute PE
- V/Q Scan scan is key in the diagnosis of CTEPH
- Normal V/Q Scan rules out the diagnosis of CTEPH
- PEA should be considered in every CTEPH patient as the first line treatment option in patients with CTEPH
- A complete bilateral PEA remains the best option and may cure the disease
- PBA should be considered if the patient is not PEA candidate

Conclusions (2)

- Anticoagulation therapy should be continued for life
- Riociguat for non operable CTEPH and persistent/recurrent PH after PEA
- More research is needed to understand the mechanisms of fibrotic vascular remoduling seen in CTEPH

Thank you

Q & A

Back-up slides

PH Is a Rapidly Progressive, Ultimately Fatal Condition

Pulmonary Hypertension

Table 2: Overview of Studies Reporting Clinical and Biomarker Response to Balloon Pulmonary Angioplasty

Author	n	Sessions/ Patient	Women (%)	Follow-up (months)	Pre-BPA FC I/II (%)	Post-BPA FC I/II (%)	Pre-BPA 6MWD (m)*	Post-BPA 6MWD (m)*	Pre-BPA NT-proBNP/ BNP (ng/l)*	Post-BPA NT-proBNP/ BNP (ng/l)*
Feinstein et al. 2001 ¹²	18	2.7	NR	34	0	88	209	497	NR	NR
Inami et al. 201443	103	3.4	80	14	13	NR	360 (280-430)	420 (350-510)	95 (42-270)	34 (16–59)
Kinutani et al. 2016 ⁴⁴	28	3	68	NR	29	96	303.0 ± 92	395 ± 124	160 ± 233	26.1 ± 30.5
Tatabe et al. 2016 ²³	35	3.5	74	15	63	100	408 ± 181	482 ± 146	252 ± 237	34 ± 23
Ogo et al. 2016 ²²	80	4.8	73	12	4	NR	372 ± 124	470 ± 99	227 ± 282	48 ± 57
Aoki et al. 201746	77	5	82	38	68	NR	380 ± 138	486 ± 112	55.8 (25-219)	25 (16-50)
Olsson et al. 2017 ¹⁷	56	5	56	14	16	71	358 ± 108	391±108	504 (233-1,676)	242 (109–555)
Yamasaki et al. 2017 ⁴⁷	20	2.7	80	5	10	79	396 ± 120	441 ± 104	NR	NR
Ogawa et al. 2017 ²⁵	380	4.6	70	18	19	96	318 ± 122	401 ± 105	240 ± 334	43±76
Kreichbaum et al. 2018 ²⁸	51	5	55	6	4	88	375 (281–446)	NR	821 (153–1872)	257 (115–508)
Brenot et al. 2019 ³⁰	184	5.5	49	18	36	79	396 ± 120	441 ± 104	NR	NR
Hoole et al. 2020 ¹⁸	30	3	27	3	20	90	366 ± 107	440 ± 104	442 (168-1,607)	202 (155-447)
Velazquez et al. 2019 ²⁹	46	3.4	70	15	12	88	395 ± 112	468 ± 103	1,233 ± 1,327	255 ± 318
Siennicka et al. 2019 ³¹	58	4.4	57	22	19	55	342 ± 142	NR	3,005 ± 4,650	NR
van Thor et al. 2020 ³⁶	38	4.5	61	6	63	89	374 ± 124	422 ± 125	195 (96–1,812)	154 (71–387)

N

*Data are presented as mean ± SD or median (IOR). 6MWD = 6-minute walking distance; BPA= balloon pulmonary angioplasty; FC = functional class; NT-proBNP = N-terminal pro-brain natriuretic peptide; NR = not reported.

Table 4: Overview of Studies Reporting Details of Complications Associated with Balloon Pulmonary Angioplasty

Author and Year	N	Sessions	Mortality	AE Rate	Wire Injury	PA Dissection or Perforation	Embolisation or Stent	Reperfusion or Lung Haemorrhage	Other	
Feinstein et al. 2001 ¹²	18	47	5.6%	47%	2%	2%	2%	23%	Femoral pseudoaneurysm × 3	
Ogo et al. 2016 ²²	80	385	0%	16%	7.5%	0.3%	1.5%	4.7%	Haemoptysis 4.7%, Contrast allergy × 8	
Ogawa et al. 2017 ²⁵	380	1,408	2.6%	36.3%	NR	3.4%	1.3%	17.8%	Haemoptysis 14%, intubation × 17, ECMO × 9	
Velazquez et al. 2019 ²⁹	46	156	2.1%	28%	2.4%	6.4%	0.6%	5.8%	Haemoptysis 12.8%, intubation + ECMO × 1	
Brenot et al. 2019 ³⁰	184	1,006	2.2%	11.2%	NR	3.7%	0.6%	9.1%	Haemoptysis 7.1%, NIV 3%, intubation with/ without ECMO × 4	
Hoole et al. 2020 ¹⁸	30	95	0%	10.5%	3.2%	NR	1%	3.2%	Haemoptyisis 5%, femoral pseudoaneurysm × 2	
Maschke et al. 2019 ³²	67	266	0%	10.9%	NR	1.1%	0%	2.2%	Haemoptysis 3%, dry cough 4.1%, atrial tachycardia × 1	
Godinas et al. 2019 ³⁵	18	91	0%	12%	3%	0%	1%	2%	Arrhythmia × 2, stress cardiomyopathy × 1	
van Thor et al. 2020 ³⁶	38	172	0%	12%	8%	1.5%	0%	0%	Conduction disturbance/ arrhythmia 1.5%	

AE = adverse event; ECMO = extracorporeal membrane oxygenation; NIV non-invasive ventilation; NR = not reported; PA = pulmonary artery.

