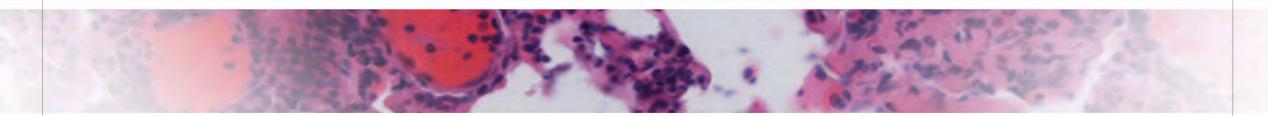

Myelodysplastic Syndromes "ASH 2024 Highlights"

Rami Komrokji, MD Professor of Oncologic Sciences Vice Chair, Department of Malignant Hematology H Lee Moffitt Cancer Center Tampa, Florida

COI disclosures

BMS: Research Grant, Advisory board DSI: Advisory board Geron: Consultancy Genentech: consultancy Pharma Essentia: Speaker Bureau, Advisory board Rigel: Speaker Bureau, Advisory board Servier: Speaker Bureau, Advisory board Sobi: Speaker Bureau, Advisory board Sumitomo Pharma: consultancy, Advisory board

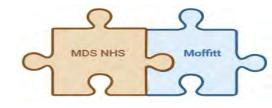
Myelodysplastic Syndromes (MDS) in the United States



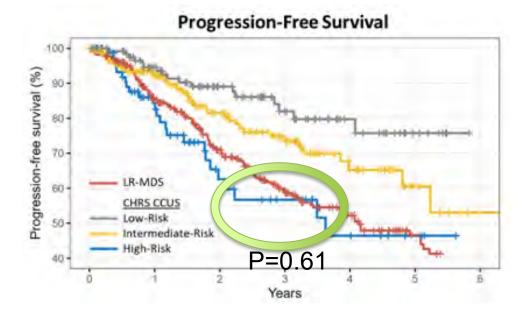
AML = Acute Myeloid Leukemia

Ma X. Am J Med. 2012;125(7):S2–S5; Cogle CR. Curr Hematol Malig Rep. 2015;10(3):272-281; American Cancer Society. <u>www.cancer.org</u>. Accessed 10/24/23. Leukemia and Lymphoma Society. <u>www.lls.org</u> Accessed 10/24/23.

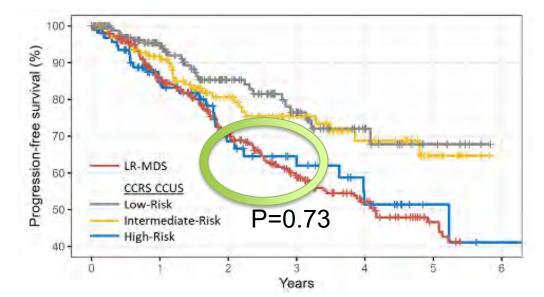
American Society of Hematology Helping hematologists conquer blood diseases worldwide



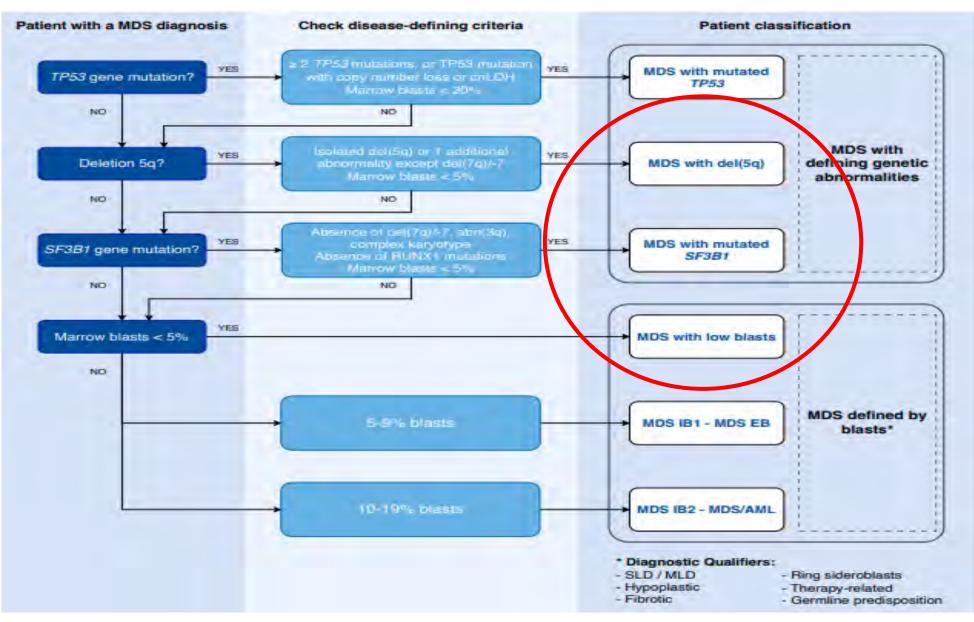
High-Risk CCUS is Clinically Indistinguishable from Low-Risk Myelodysplastic Syndromes/Neoplasms


Zhuoer Xie, MD, MS, Zena Komrokji, Michael Otterstatter, PhD, Ling Zhang, MD, Lynn C. Moscinski, MD, Najla H. Al Ali, David A Sallman, MD, Jeffrey Lancet, MD, Amy E. DeZern, MD, MHS, Mikkael A. Sekeres, MD, Rami S. Komrokji, MD, **Nancy K Gillis, PhD and Eric Padron, MD**

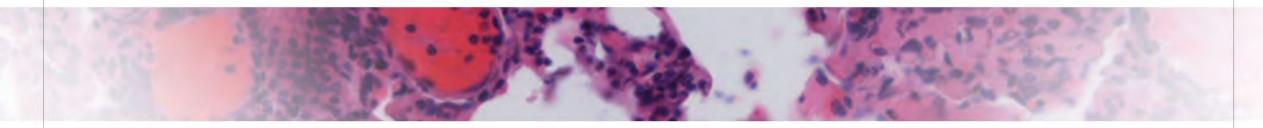
Department of Malignant Hematology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL; The Emmes Company, LLC, Rockville, MD; Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD; Sylvester Cancer Center, University of Miami Health System, Miami, FL


Progression free survival

• High-Risk CCUS were more similar to LR-MDS in terms of median (IQR) hemoglobin, platelets and absolute neutrophil count (ANC)


	CHRS CCUS vs LR-MDS			
CCUS Risk Category	HR	P-value		
Low-Risk	0.36 (0.21-0.61)	< 0.001		
Intermediate-Risk	0.62 (0.44-0.89)	0.01		
High-Risk	1.12 (0.72-1.73)	0.611		

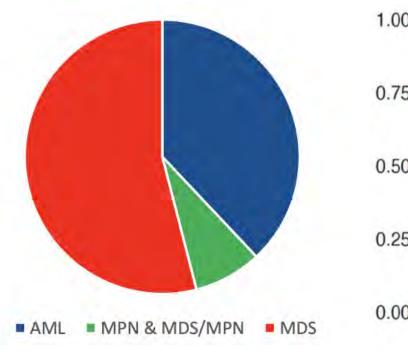
	CCRS CCUS vs LR-MDS				
CCUS Risk Category	HR	P-value			
Low-Risk	0.49 (0.32-0.75)	< 0.001			
Intermediate-Risk	0.58 (0.39-0.88)	0.009			
High-Risk	0.93 (0.62-1.40)	0.726			

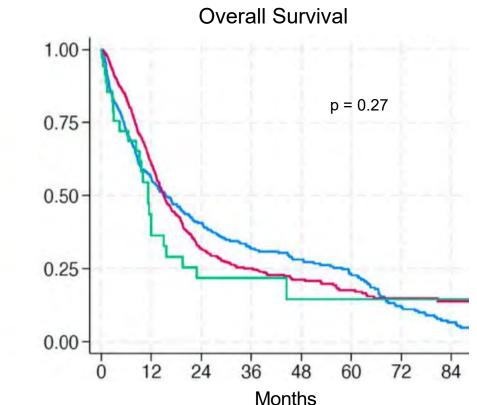

Harmonized WHO/ICC 2022 classification

Komrokji et al, Lancet Hematology 2024 Dec;11(12):e886. doi: 10.1016/S2352-3026(24)00339-9

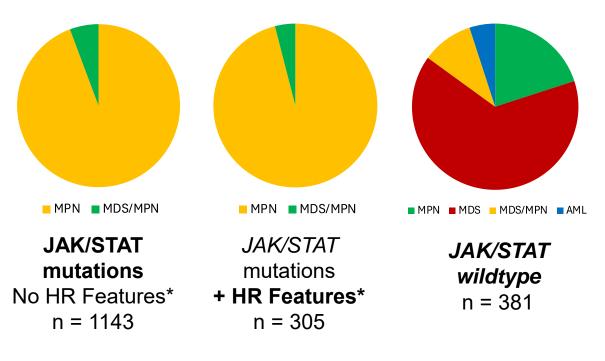
American Society of Hematology Helping hematologists conquer blood diseases worldwide

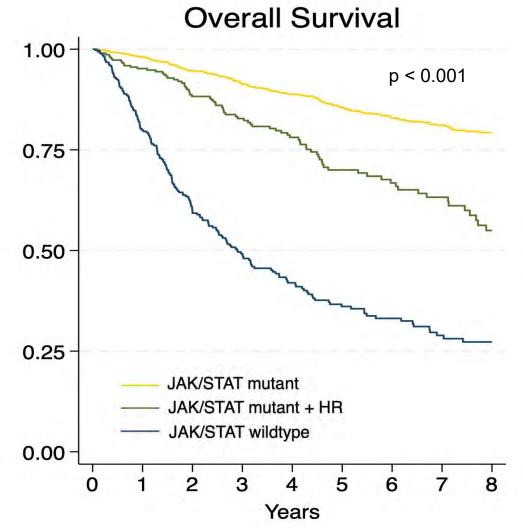
AI, Data-Driven, Comprehensive Classification of Myeloid Neoplasms Based on Genomic, Morphological and Histological Features

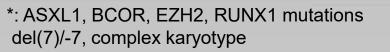

Luca Lanino, S D'Amico, G Maggioni, N Al Ali, YH Wang, C Gurnari, N Gagelmann, JP Bewersdorf, S Ball, P Guglielmelli, M Meggendorfer, A, AS Kubasch, E Travaglino, A Campagna, M Ubezio, A Russo, G Todisco, C Tentori, A Buizza, E Sauta, M Zampini, E Riva, G Asti, M Delleani, F Ficara, A Santoro, C Sala, D Dall'Olio, L Dall'Olio, T Kewan, I Casetti, H Awada, B Xicoy, V Vucinic, HA Hou, WC Chou, CY Yao, CC Lin, HF Tien, A Consagra, D Sallman, W Kern, M Bernardi, P Chiusolo, LM Borin, MT Voso, L Pleyer, L Palomo, D Quintela, A Jerez, E Cornejo, P Garcia Martin, M Díaz-Beyá, A Avendaño Pita, V Roldan, D Fiallo Suarez, E Cerezo Velasco, Marisa Calabuig, Guillermo Garcia-Manero, Sanam Loghavi, Uwe Platzbecker, Francesc Sole, Maria Diez-Campelo, J Maciejewski, N Kroger, P Fenaux, M Fontenay, V Santini, T Haferlach, U Germing, E Padron, M Robin, F Passamonti, E Solary, A Vannucchi, G Castellani, AM Zeidan, RS Komrokji, MG Della Porta


Results 2 - Splicing Mutations Are Shared Across Multiple Entities

Disease Entity	Early Disease:Absence of High-Risk FeaturesNo Excess Blasts	High-Risk Features: - RUNX1/ASXL1 mutations - del(7)/-7, abn(3q) or CK Advanced Disease: - Excess Blasts
MN with SF3B1 mutation (n=1991)	MDS: 88.1% MDS/MPN: 11.9%	MDS: 40.8% MDS/MPN: 8.4% AML: 50.8%
MN with SRSF2 mutation (± <i>TET</i> 2) (n=1447)	MDS: 54.5% MDS/MPN: 45.5%	MDS: 25.6% MDS/MPN: 22.2% AML: 52.1%
MN with <i>U2AF1</i> mutation (n=1118)	MDS: 87.5% MDS/MPN: 12.5%	MDS: 34.8% MDS/MPN: 4.6% AML: 60.6%


Results 3 - *TP53* Drives Cluster Assignment Irrespective of Diagnostic Entity


- Biallelic inactivation was identified in most cases (>65%)
- Monoallelic TP53 MNs showed progression to biallelic at leukemic evolution


Results 4 - Fibrosis identifies distinct clusters with diverse features and survival

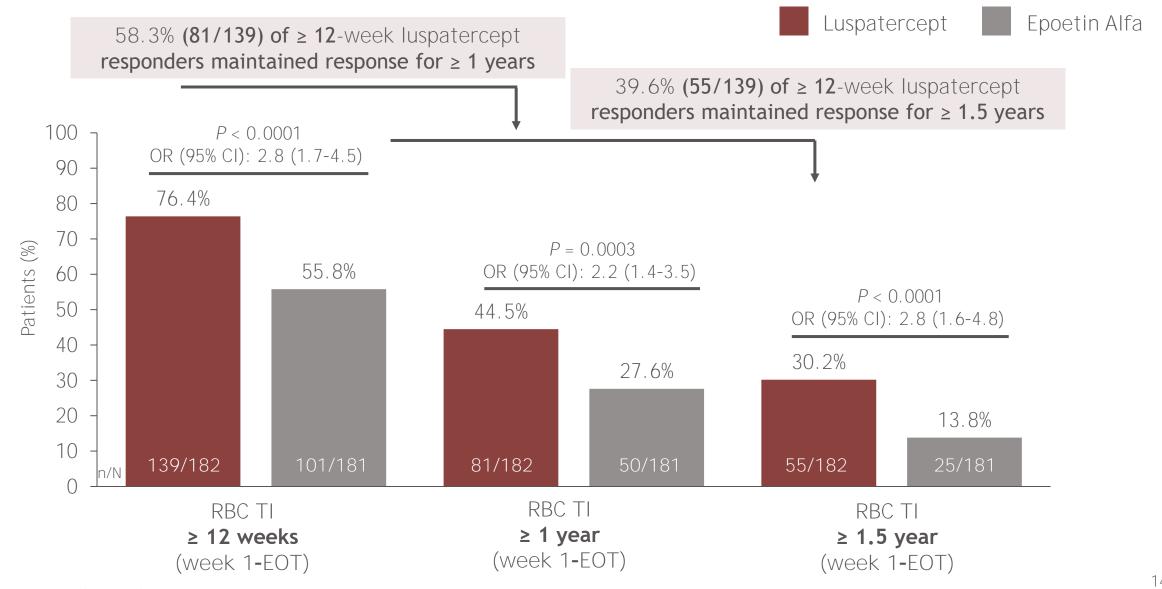
- SHAP analysis identified marrow fibrosis (MF2+) as a relevant features for cluster assignment
- Triple-negative MNs with fibrosis had the worst prognosis and a high prevalence of HR features

American Society of Hematology

Case :

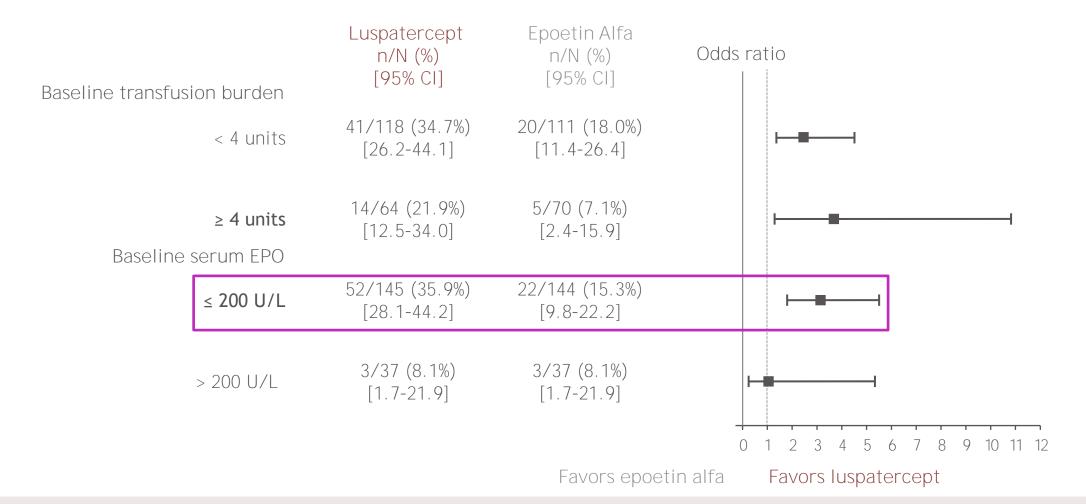
- 68-year-old female past medical history of HTN presented to ER with shortness of breath. CBC WBC 4.0/ANC 2.0/HGB 7.0 g/dl/plat 270
- The patient received 2 units PRBC and hematology consulted.
- A bone marrow aspirate and biopsy performed revealing hypercellular bone marrow, erythroid dysplasia, no increased myeloblasts, and 30% ring sideroblasts.
- Karyotype was normal. NGS revealed *SF3B1* K700E VAF 30%, *TET-2* VAF 30%.
- IPSS-M: -0.87 (Low), IPSS-R 2.5 (low)
- Endogenous erythropoietin level is 225 U/L.

CASE-


- How should this patient be treated?
 - A. ESA
 - B. Luspatercept
 - C. Imetelstat
 - D. Lenalidomide

Long-term response analysis of transfusion independence in erythropoiesis stimulating agent-naive patients with very low-, low-, or intermediate-risk myelodysplastic syndromes treated with luspatercept versus epoetin alfa in the COMMANDS trial

Guillermo Garcia-Manero,¹ Valeria Santini,² Amer M. Zeidan,³ Rami S. Komrokji,⁴ Veronika Pozharskaya,⁵ Karen Keeperman,⁵ Shelonitda Rose,⁵ Yinzhi Lai,⁵ Barkha Aggarwal,⁵ Dimana Miteva,⁶ David Valcárcel,⁷ Pierre Fenaux,⁸ Jake Shortt,⁹ Matteo Giovanni Della Porta,¹⁰ Uwe Platzbecker¹¹


¹MD Anderson Cancer Center, Houston, TX, USA; ²AOUC, University of Florence, Florence, Italy; ³Yale School of Medicine, New Haven, CT, USA; ⁴Moffitt Cancer Center, Tampa, FL, USA; ⁵Bristol Myers Squibb, Princeton, NJ, USA; ⁶Bristol Myers Squibb, Boudry, Switzerland; ⁷Vall d'Hebron Hospital, Barcelona, Spain; ⁸AP-HP St Louis, Paris, France; ⁹Monash Health & Monash University, Clayton, VIC, Australia; ¹⁰Humanitas University, Milan, Italy; ¹¹University Hospital Leipzig, Leipzig, Germany

COMMANDS: RBC-TI responses of \geq 12 weeks, \geq 1 years, and \geq 1.5 years

Data cutoff: September 22, 2023. OR, odds ratio.

COMMANDS: continuous RBC-TI ≥ 1.5 years^a across patient subgroups

Patients with baseline serum erythropoietin \leq 200 U/L had a 2.3 x greater response rate for RBC-TI \geq 1.5 years with luspatercept compared with epoetin alfa

Data cutoff: September 22, 2023. ^aDefined as patients achieving a single, uninterrupted period of RBC-**TI for** \geq **1.5 years from week 1**-EOT.

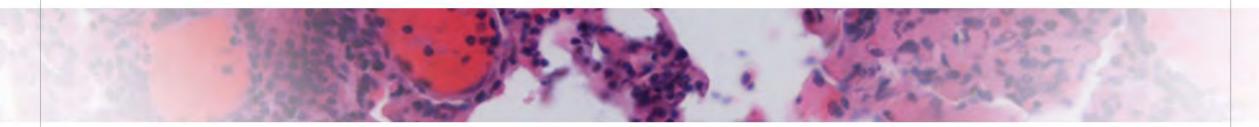
COMMANDS: continuous RBC-TI ≥ 1.5 years^a across patient subgroups

Superior RBC-TI benefit with luspatercept versus epoetin alfa was observed across prespecified subgroups, including those who were RS- who had 1.5 x greater response rate

Activity of luspatercept and ESAs combination for treatment of anemia in lower-risk myelodysplastic syndromes

Baseline characteristics (n=28)	% (n)
Age (median)	72 (51-94)
Gender (male)	68(19)
Race (white)	96 (27)
MDS classification WHO 2016	
MDS-SLD	10.7 (3)
MDS-MLD	10.7 (3)
MDS-SLD-RS	32.1 (9)
MDS-MLD-RS	21.4 (6)
MDS del 5q	3.6 (1)
MDS/MPN-RS-T	21.4 (6)
R-IPSS	
Very low	21.4 (6)
Low	67.9 (19)
Intermediate	7.1 (2)
High	3.6 (1)
Hgb (mean) g/dl	8 (6.6-9.4)
Platelets (mean) x10 ⁹ /L	259 (16-814)
ANC (mean) x10 ⁹ /L	2.53 (.45-9.1)
Myeloblasts % (mean)	2 (0-4)
Serum erythropoietin level (median)	119.5 (n=18)
U/L	
RBC transfusion Burden	
NTD	11 (3)
LTB	46 (13)
НТВ	43 (12)
Prior ESA treatment	89 (24)
Prior HMA treatment	42 (12)
Prior Lenalidomide treatment	39 (11)
Somatic mutations	
SF3B1	85.7 (24)
TET-2	44 (12/27)
DNMT3A	22 (6/27)
ASXL-1	4 (1/27)
TP53	4 (1/27)
JAK-2	12 (3/27)

	% (n)
Overall response (n=28)	36 (10)
Hgb increase more than 1.5 g/dl in NTD or Hgb	
increase more than 1.5 g/dl with RBC-TI in	18 (5/28)
RBC-TD	14 (4/28)
RBC-TI without Hgb 1.5 g/dl increase	4 (1/28)
>50% reduction in RBC-TB	
Response in NTD (n=3)	
Hgb increase more than 1.5 g/dl	33 (1/3)
Response in LTB (n=13)	38 (5/13)
Hgb increase more than 1.5 g/dl and RBC-TI	15 (2/13)
RBC-TI without Hgb 1.5 g/dl increase	23 (3/13)
>50% reduction in RBC-TB	0
Response in HTB (n=12)	33 (4/12)
Hgb increase more than 1.5 g/dl and RBC-TI	17 (2/12)
RBC-TI without Hgb 1.5 g/dl increase	8 (1/12)
>50% reduction in RBC-TB	8 (1/12)


Predictors of response included:

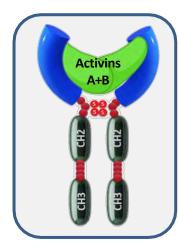
- Prior response to luspatercept monotherapy/or frontline combination compared to primary luspatercept failure.
- Endogenous serum epo levels < 500
- SF3B1 mutation.
- HMA/Len treatment naïve.

American Society of Hematology

Helping hematologists conquer blood diseases worldwide

Combining ESA and Luspatercept in Non-RS MDS Patients Having Failed ESA - Results of the Phase 1-2 Part a of the GFM Combola Study

Lionel Ades, MD, PhD¹, Thomas Cluzeau, MD, PhD², Thibault Comont^{3*}, Lorea Aguinaga, MD^{4*}, Aspasia Stamatoullas, MD^{5*}, Mathieu Meunier^{6*}, Emmanuel Gyan, MD, PhD⁷, Alice Garnier, MD^{8*}, Maud D'Aveni, MD, PhD^{9*}, Sylvain Thépot, MD^{10*}, Marie Sebert, MD, PhD^{11*}, Marius Moldovan^{12*}, Anouk Walter Petrich, MD^{13*}, Karine Lemarie^{14*}, Fatiha Chermat^{15*}, Michaela Fontenay^{16*}, Sylvie Chevret^{17*} and Pierre Fenaux, MD¹⁸


GFM COMBOLA Part A: Efficacy

Outcome, n (%)	Low Transfusion Burden (n = 6)	High Transfusion Burden (n = 16)	Nontransfusion Dependent (n = 2)	Overall (N = 24)
Erythroid response* at Wk 25	2 (33)	4 (25)	1 (50)	7 (30)
*Per IWG 2018.				

- Among 7 patients who achieved an erythroid response, 3 continue to respond to treatment
 - Median DoR: 9.18 mo
- 2 patients achieved a platelet response, and 1 achieved a neutrophil response
- In terms of survival, n = 2 experienced progression to AML, n = 5 died (n = 2 due to infection, n = 1 due to AML evolution; none deemed related to study drug)

Ades. ASH 2023. Abstr 351.

KER-050 (elritercept) is Designed to Target Bone Marrow Disorders of Ineffective Hematopoiesis Including MDS

KER-050 (elritercept)

 Designed to inhibit select TGF-beta ligands, including <u>Activin A</u>, which has been associated with <u>ineffective hematopoiesis, disease</u> pathogenesis and progression^{1,2}

	Domain	Effect		
•••	Erythropoiesis	ALL stages of differentiation and maturation		
0 0 0 0 0 0 0 0 0	Thrombopoiesis	ALL stages of differentiation and maturation		
\sim	Bone	Increased bone formation		
Fe	Iron Metabolism	Improved iron utilization		

- Preclinical data showed that KER-050 (elritercept) acts on early and late stages of hematopoiesis, supporting a differentiated MOA³
- KER-050 has the potential to:
 - Treat a broad range of patients with lowerrisk (LR) MDS
 - Provide clinical benefit beyond improving hematopoiesis (Chee, et al. ASH 2023 Poster #1089)

Preliminary results from an ongoing open- label Phase 2 trial evaluating KER-050 (elritercept) in participants with LR-MDS Presented ASH 2023 Diez-Campelo et al

American Society of Hematology

¹Verma A, et al. *J Clin Inv* 2020; ²Portale F, et al., *Haematologica*. 2019; ³Feigenson, M et al. European Hematology Association. 2021

Hematological Responses Observed in Broad Array of Participants

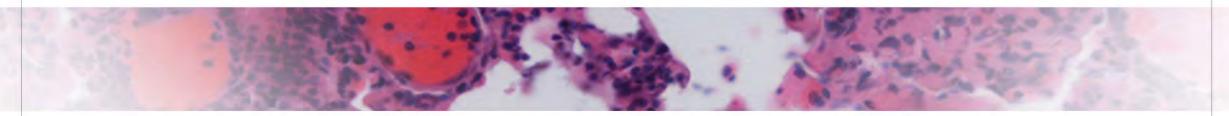
Deemonders (NL(9())	mlT	T ₂₄ ^a	mITT ₂₄ + EPO n < 500 U/L ^b		
Responders/N (%)	All (N=87)	HTB (N=51)	All (N=71)	HTB (N=39)	
Overall Response ^c	48/87 (55.2)	25/51(49)	43/71 (60.6)	22/39 (56.4)	
Modified IWG 2006 HI-E ^d	42/87 (48.3)	24/51 (47.1)	37/71 (52.1)	21/39 (53.8)	
RS+	33/59 (55.9)	19/35 (54.3)	29/52 (55.8)	16/30 (53.3)	
non-RS	9/28 (32.1)	5/16 (31.3)	8/19 (42.1)	5/9 (55.6)	
TI ≥8 weeks ^e	27/69 (39.1)	16/51 (31.4)	26/55 (47.3)	15/39 (38.5)	
RS+	22/47 (46.8)	13/35 (37.1)	21/41 (51.2)	12/30 (40.0)	
non-RS	5/22 (22.7)	3/16 (18.8)	5/14 (35.7)	3/9 (33.3)	

Overall response rates in participants with HTB were similar to those observed in the overall (mITT₂₄) population.

Higher response rate was observed in the EPO < 500 U/L population, particularly in non-RS participants.

*Includes data for Weeks 0–24 in mITT₂₄ participants; ^bIncludes data for Weeks 0–24 in mITT₂₄ participants with baseline EPO < 500 U/L, excluding one participant with del5q MDS. 9 mITT₂₄ participants (2 LTB RS+, 1 LTB non-RS, 4 HTB RS+, 2 HTB non-RS) had missing Baseline EPO measures and were conservatively classified as having EPO < 500 U/L. Two (both HTB, 1 RS+, 1 non-RS) of these 9 participants had EPO values ≥ 500 U/L post-baseline; both achieved a HI-E response, but not TI; ^oDefined as achieving modified IWG 2006 HI-E and/or TI; ^dModified IWG 2006 HI-E = mean increase in hemoglobin ≥1.5 g/dL (NT+LTB) or reduction in transfusion of ≥4 RBC U/8 Wks (HTB) on treatment compared to 8–week pre-treatment period; ^eTI-evaluable participants received at least 2 RBC units in the 8–wk pre-treatment period.

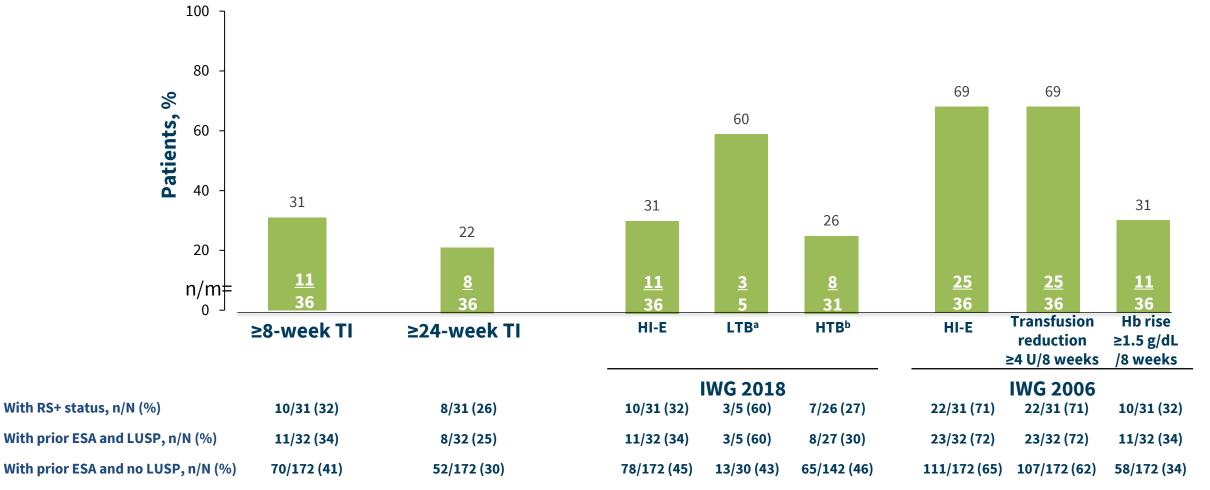
Case :


- 74-year-old gentleman past medical history of CAD diagnosed originally with MDS-MLD, blasts 3%; normal karyotype, NGS TET-2/DNMT3A. CBC at diagnosis Hgb 9 g/dl, plat 200, ANC 2000. EPO 64 U/L
- IPSS-M: -0.99 (low), IPSS-R (AA) 3.14 (INT)
- The patient was started on erythropoietin 40,000. Hgb improved originally but after one year on escalated dose treatment Hgb progressively decreased, and patient became RBC-TD requiring 2 Units PRBC every 3 weeks.
- Repeat bone marrow no disease progression or clonal evolution.

CASE

- How would you treat this patient at this point
 - A. Azacitidine 5days regimen
 - B. Decitabine 3 days regimen
 - C. Lenalidomide
 - D. Imetelstat
 - E. Luspatercept

American Society of Hematology Helping hematologists conquer blood diseases worldwide

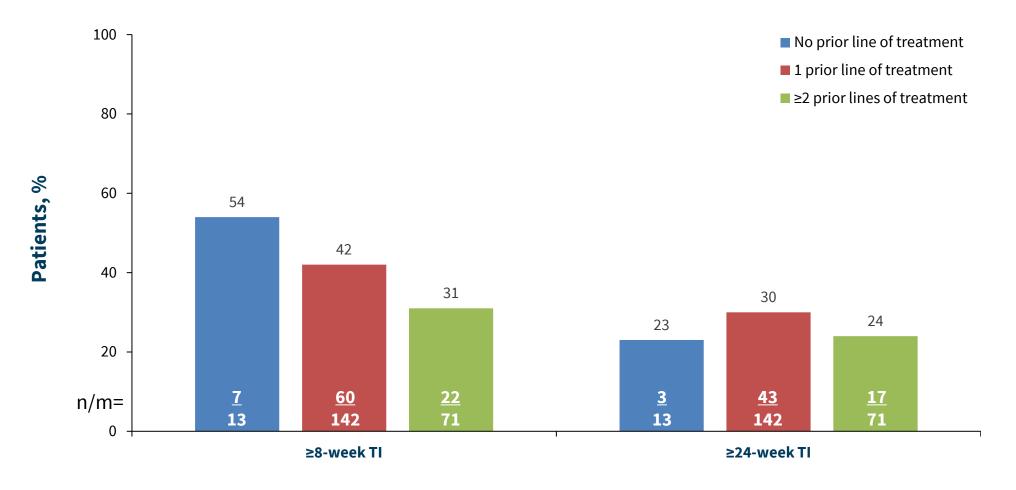

Effect of Prior Treatments on the Clinical Activity of Imetelstat in Transfusion-Dependent Patients with Erythropoiesis-Stimulating Agent, Relapsed or Refractory/Ineligible Lower-Risk **Myelodysplastic Syndromes**

Uwe Platzbecker, MD,¹ Valeria Santini, MD,² Amer M. Zeidan, MBBS, MHS,³ Mikkael A. Sekeres, MD,⁴ Pierre Fenaux, MD, PhD,⁵ Azra Raza, MD,⁶ Moshe Mittelman, MD,⁷ Sylvain Thépot, MD,⁸ Rena Buckstein, MD, FRCPC,⁹ Ulrich Germing, MD,¹⁰ Yazan F. Madanat, MD,¹¹ María Díez-Campelo, MD, PhD,¹² David Valcárcel, MD, PhD,¹³ Anna Jonášová, MD, PhD,¹⁴ Souria Dougherty, MBA,¹⁵ Sheetal Shah, BA,¹⁵ Qi Xia, PhD,¹⁵ Libo Sun, PhD,¹⁵ Shyamala Navada, MD,¹⁵ Michael R. Savona, MD,¹⁶ Rami S. Komrokji, MD¹⁷

¹Leipzig University Hospital, Leipzig, Germany; ²MDS Unit Hematology, AOUC, University of Florence, Florence, Italy; ³Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA; ⁴Sylvester Comprehensive Cancer Center, University of Miami, FL, USA; ⁵Hôpital Saint-Louis, Université de Paris 7, Paris, France; ⁶Columbia University Medical Center, New York, NY, USA; ⁷Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel; ⁸Centre Hospitalier Universitaire d'Angers, Angers, France; ⁹Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; ¹⁰Clinic for Haematology, Oncology and Clinical Immunology, Düsseldorf University Hospital, Heinrich Heine University, Düsseldorf, Germany; ¹¹Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; ¹²University Hospital of Salamanca, Salamanca, Spain; ¹³Hospital Universitario Vall d'Hebron, Barcelona, Spain; ¹⁴1st Medical Department – Hematology, General Hospital, Prague, Czech Republic; ¹⁵Geron Corporation, Foster City, CA, USA; ¹⁶Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA; ¹⁷Moffitt Cancer Center, Tampa, FL, USA

Presentation 352 | Presented at the 66th American Society of Hematology (ASH) Annual Meeting and Exposition; December 7-10, 2024; San Diego, CA, USA

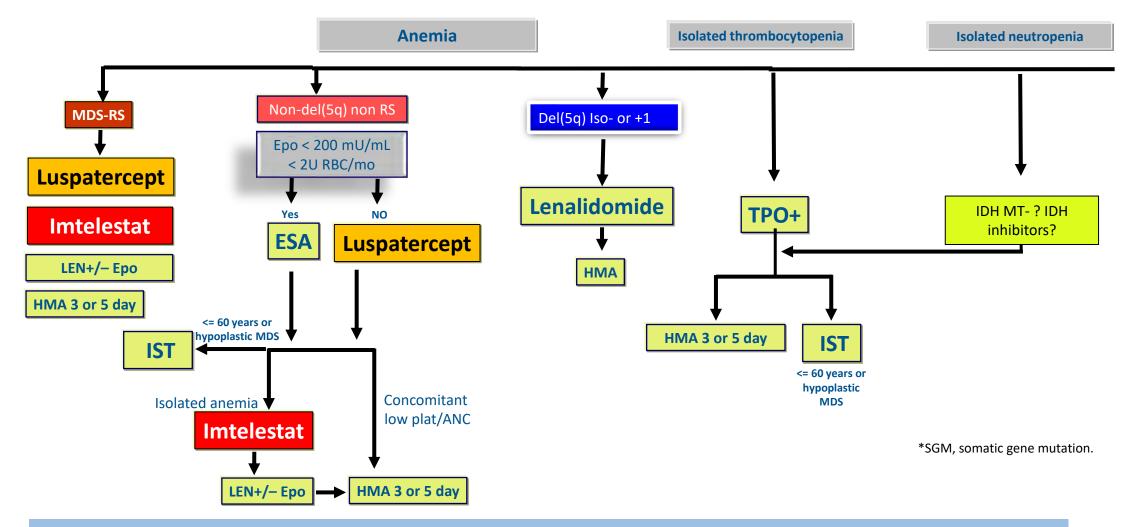
Results: Imetelstat Shows Clinical Activity in Patients With Prior LUSP (n=36)



ESA, erythropoiesis-stimulating agent; Hb, hemoglobin; HI-E, hematologic improvement-erythroid; HTB, high transfusion burden; IWG, International Working Group; LTB, low transfusion burden; LUSP, luspatercept; n/m, number with event/number in population; RBC, red blood cell; RS, ring sideroblast; TI, transfusion independence.

^aLTB defined as 3-7 RBC U in 16 weeks in ≥2 transfusion episodes, and a maximum of 3 in 8 weeks. ^bHTB defined as ≥8 RBC U in 16 weeks, or ≥4 RBC U in 8 weeks.

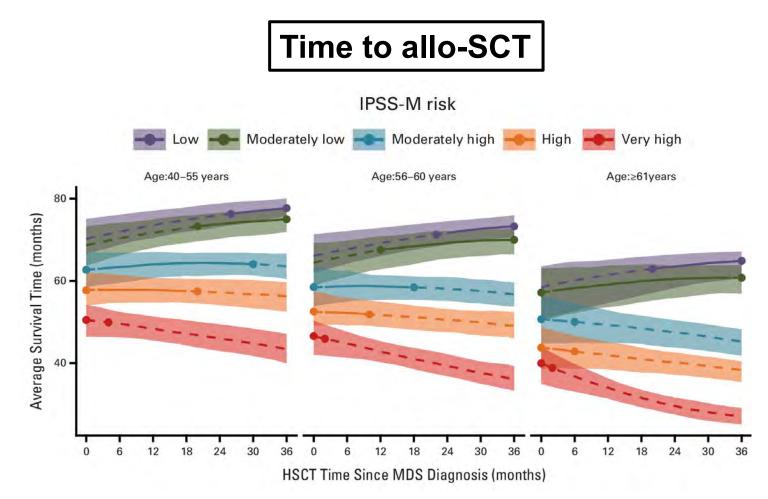
S American Society of Hematology


Results: Imetelstat Clinical Activity by Number of Prior Lines of Therapy (N=226)

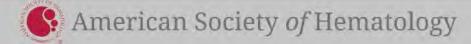
n/m, number with event/number in population; TI, transfusion independence.

How I treat LR-MDS in 2025

- Allogeneic stem cell transplant maybe considered after standard therapy failure or in younger patients with higher-risk disease features by IPSS-M.
- Iron chelation should be considered in patients with evidence of iron overload.

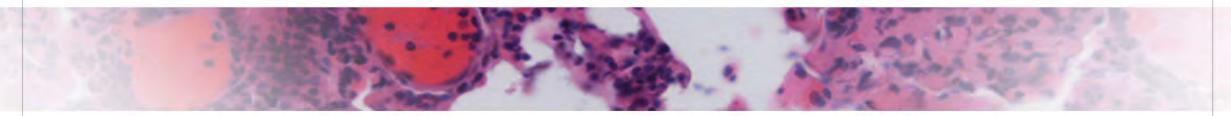

Case :

- 63-year-old gentleman no significant past medical history presented with fatigue, and SOB to local ER. CBC revealed WBC 3000, ANC 2.0, Hgb 7.2 g/dl, platelets 30.
- A bone marrow aspirate and biopsy was obtained, hypercellular bone marrow, 8% myeloblasts, karyotype del 12p (good)
- NGS: *TET-2* mutation VAF 30%; *RUNX1* mutation VAF 20%


Case

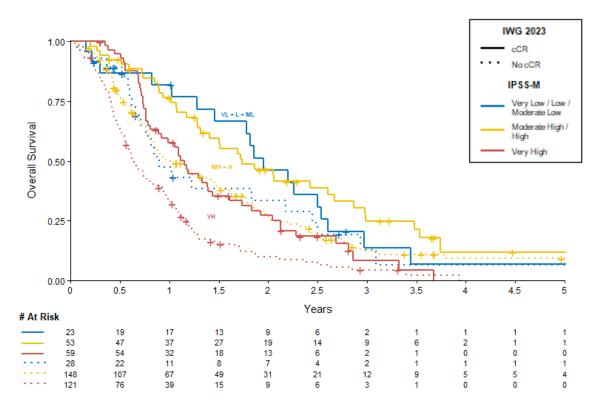
- How do you treat this patient?
 - A. ESA
 - B. Luspatercept
 - C. Imetelstat
 - D. Hypomethylating agent
 - E. Hypomethylating agent and consideration of AHSCT

IPSS-M for **AHSCT**



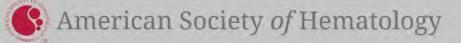
Tentori et al. (2024). Clinical and Genomic-Based Decision Support System to Define the Optimal Timing of Allogeneic Hematopoietic Stem-Cell Transplantation in Patients With Myelodysplastic Syndromes. J Clin Oncol., 42(24):2873-2886, doi:10.1200/JCO.23.02175.

American Society of Hematology Helping hematologists conquer blood diseases worldwide

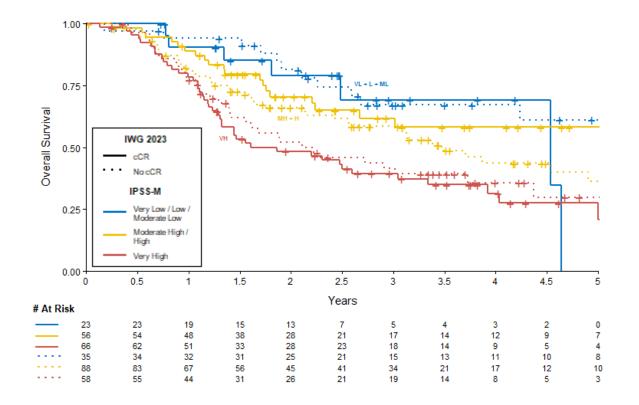


Impact of Response to Hypomethylating Agent-Based Therapy on Survival Outcomes in the Context of Baseline Clinical-Molecular Risk and Transplant Status in Patients with Myelodysplastic Syndromes/Neoplasms (MDS): An Analysis from the International Consortium for MDS (icMDS) Validate Database

Benjamin Rolles^{1,2}, Jan Philipp Bewersdorf^{3,4}, Tariq Kewan³, Ondrej Blaha⁵, Jessica M. Stempel³, Luca Lanino⁶, Najla H. Al Ali⁷, Amy E. DeZern⁸, Mikkael A. Sekeres⁹, Geoffrey L. Uy¹⁰, Hetty E. Carraway¹¹, Pinkal Desai¹², Elizabeth A. Griffiths¹³, Eytan M. Stein⁴, Andrew M. Brunner¹⁴, Christine McMahon¹⁵, Rory M. Shallis³, Joshua F. Zeidner¹⁶, Michael R. Savona¹⁷, Stacey M. Frumm¹, Shougat Barua², Namrata S. Chandhok⁹, Constantine Logothetis¹⁰, Aram Bidikian³, Ted M. Getz³, Gail J. Roboz¹², Eunice S. Wang¹³, Amyah C. Harris¹⁴, Maria L Amaya¹⁵, Hayley Hawkins¹⁷, Somedeb Ball¹⁷, Justin Grenet¹², Zhuoer Xie⁷, Yazan F. Madanat¹⁸, Yasmin Abaza¹⁹, Talha Badar²⁰, Torsten Haferlach²¹, Jaroslaw Maciejewski¹¹, David A. Sallman⁷, Anoop K Enjeti²², Kamal Al-Rabi, MD²³, Khalid Halahleh²³, Devendra Hiwase²⁴, Maria Diez-Campelo²⁵, David Valcárcel²⁶, Claudia Haferlach²¹, Lisa Pleyer²⁷, Ioannis Kotsianidis²⁸, Vassiliki Pappa²⁹, Valeria Santini³⁰, Angela Consagra³⁰, Aref Al-Kali³¹, Seishi Ogawa³², Yasuhito Nannya³², Matteo Giovanni Della Porta⁶, Rami S. Komrokji⁷, Amer M. Zeidan³ and Maximilian Stahl, MD²

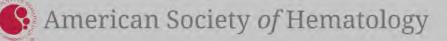

¹Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston; ²Department of Medican Conclogy, Dana-Farber Cancer Institute, Boston; ³Department of Medicine, Berdizer, Billinger, ¹BRCS Humanitas Research Hospital, Harvard Medical School of Public Health, Yale Center for Analytical Sciences, Yale University, New Haven; ¹BRCS Humanitas Research Hospital, Rozzano, Milano, Italy; ¹Department of Medican Center, Tampa; ¹Sidney Kimmel heartology, H. Lee Moffitt Cancer Center, Tampa; ¹Sidney Kimmel heartology, H. Lee Moffitt Cancer Center, Tampa; ¹Sidney Kimmel heartology, H. Lee Moffitt Cancer Center, Tampa; ¹Sidney Kimmel heartology, Haussington University of Medican Choology, Taussig Cancer Institute, Leukernia Program, Cleveland Clinic, Cleveland; ¹Weill Comel Medicine, New York Cliy, ¹Seveand Park Comprehensive Cancer Center, Juniversity of North Crolina, ¹Cheberger Comprehensive Cancer Center, Comprehensive Cancer Center, Comprehensive Cancer Center, Comprehensive Cancer Center, Cancer Center, Cancer Center, Vanderbill-University of Colorado, Aurora; ¹Cheberger Comprehensive Cancer Center, Cancer Ce

Treatment response in non-transplanted patients



- Effect	n = 432 (%)	HR (95% CI)		p - valu
IWG 2023 (vs. No cCR)	297 (68.75%)			
- cCR	135 (31.25%)	0.602 (0.477 ; 0.758)	⊢−−− +	< 0.001
IPSS-M Risk (vs. Very High)	180 (41.67%)			< 0.001
- High / Moderate High	201 (46.53%)	0.554 (0.442 ; 0.695)	⊢−−−	< 0.001
- Moderate Low / Low / Very Low	51 (11.80%)	0.585 (0.411 ; 0.833)	F	0.003

- Within each pre-defined IPSS-M risk group, <u>non-</u> <u>transplanted</u> patients had improved median OS if they achieved a cCR compared to patients who did not.
- In <u>non-transplanted</u> patients who achieved cCR the median OS remained significantly different based on baseline IPSS-M.



Treatment response in transplanted patients

- Effect	n = 326 (%)	HR (95% CI)					p - value
WG 2023 (vs. No cCR)	181 (55.52%)						
- cCR	145 (44.48%)	1.003 (0.732 ; 1.375)					 0.986
PSS-M Risk (vs. Very High)	124 (38.04%)			 			 < 0.001
- High / Moderate High	144 (44.17%)	0.622 (0.445 ; 0.868)			-	-	0.005
- Moderate Low / Low / Very Low	58 (17.79%)	0.375 (0.223 ; 0.629)	-				< 0.001

- No effect of IWG 2023 response on OS in <u>transplanted</u> patients with MDS when adjusted for baseline IPSS-M risk.
- However, within <u>transplanted</u> patients OS was significantly different based on a patient's baseline IPSS-M.

Lessons Learned from Phase III clinical trials in HR-MDS

Drug	Patient characteristics	Intervention	Study outcomes		
Venetoclax	Newly-diagnosed HR-MDS Estimated enrollment: 500	Venetoclax + AZA vs. placebo + AZA	Primary Outcome: - Complete Remission (CR) based on IWG 2006 MDS criteria (Up to 36 Months) - Overall survival (OS) (Up to 5 years)		
MBG453 (Sabatolimab)	Newly-diagnosed HR-MDS or CMML-2 Estimated enrollment: 500	MBG453+ AZA vs. placebo + AZA	Primary Outcome: - Overall Survival (Up to 5 years after last patient randomized)	I walk this empt street on the	
Pevonedistat	Newly-diagnosed HR-MDS, CMML, or Low-Blast AML Estimated enrollment: 502	Pevonedistat + AZA vs. AZA alone Open-label	Primary Outcome: - Event-Free Survival (From randomization until transformation to AML, or death due to any cause; up to 6 years)	boulevard of bro dreams	
Magrolimab	Newly-diagnosed HR-MDS Estimated enrollment: 520	Magrolimab + AZA vs. AZA + placebo	Primary Outcomes: - Complete Remission (CR) based on IWG 2006 MDS criteria (Up to 24 Months) - Overall survival (OS) (Up to 5 years)		
APR-246	Newly-diagnosed TP53-mutated HR-MDS Estimated enrollment: 154	APR-246 + AZA Vs. AZA alone Open-label	Primary Outcome: - Complete response rate (CR) with APR 246 + azacitidine vs. azacitidine only		
SY-1425 (Tamibarotene)	Newly-diagnosed RARA-positive HR-MDS Estimated enrollment: 190	SY-1425 + AZA Vs. placebo + AZA	Primary outcome: - Complete response rate (CR) with SY-1425 + azacitidine vs. azacitidine only		

- Bi-allelic *TP53* MDS specific clinical trials.
- Survival= CR rate x duration
- Studies are under-powered to detect small improvements

A Retrospective Analysis of HMA + Venetoclax in Patients With MDS: Baseline Characteristics

Characteristic	HMA + VEN (n = 175)	HMA (n = 196)	Post-HMA failure VEN (n = 83)
Median age, yr (range)	66 (59-72)	69 (62-75)	71 (65-77)
Male, %	63	62	69
Race, %			
White	83	92	80
Black	5.7	5.1	8.4
Hispanic	7.4	0.5	8.4
IPSS-R, %			
Intermediate	16	34	28
High	26	36	36
Very High	58	30	35
Disease type, %			
De novo	67	82	83
Therapy-related	33	18	17
Del17p/TP53 mutated, %	49	22	25

A Retrospective Analysis of HMA + Venetoclax in Patients With MDS: Efficacy and Safety

- Venetoclax mostly started in outpatient setting (78.6%) with TLS prophylaxis
 - 70-400 mg dosing range
- TLS rare: 6.2% lab-only; 1 pt with clinical TLS
- Neutropenic fever
 - HMA + VEN: 34.2%
 - HMA: 22.5%
 - Post HMA failure VEN: 44.5%

- HMA + VEN vs HMA
 - CR: 33% vs 12%
 - Marrow CR: 40% vs 27% (*P*<.001)
 - EFS: HR (95% CI) of 0.59 (0.44-0.78);
 P <.001
 - OS: HR (95% CI) of 0.77 (0.57-1.04);
 P = .08
- Post HMA failure VEN
 - CR: 10%
 - Marrow CR: 32%

Olutasidenib for IDH1 Mutated MDS: Efficacy

	Olu	Olu + Aza	Pooled
	(n = 5)	(n = 14)	(n = 19)
ORR, n (%)	2 (40)	11 (79)	13 (68)
CR	1 (20)	5 (36)	6 (32)
Marrow CR	1 (20)	6 (43)	7 (37)
PR	0	0	0
SD, n (%) Clinical benefit	1 (20) 1 (20)	3 (21) 0	4 (21) 1 (5)
PD	1 (20)	0	1 (5)

	Olu (n = 6)	Olu + Aza (n = 16)	Pooled (n = 22)
Time to CR, median mos	8.3	5.1	5.7
Duration of CR, median mos	NR	14.15	20.5
Time to CR/marrow CR, median mos	4.65	2	2
Duration of CR/marrow CR, median mos	NR	14.6	14.6
mOS, mos	14	27.5	27.2
12-mo OS rate, %	67	69	68

IDEAL: Efficacy and Safety

	Cohort A	Cohort B	Cohort C
OR, %	42.9	43.3*	55
Median DoR, mos	6.9	12.2†	NR
Median OS, mos	14.9	25.5	NR

*4 patients received ENA + AZA after 3 cycles for 1 additional response †2 patients went on to transplant

- Among 58 patients with HR-MDS in cohorts A and B
 - 45 (78%) experienced a total of 72 Grade ≥3 adverse events
 - No SAE related to enasidenib (total of 87 events)
 - 5 (8.6%) experienced differentiation syndrome which was manageable

Summary

- We keep learning about the spectrum of myeloid neoplasm
 - High risk CCUS=LR-MDS
 - Clinical phenotypes are reflection of underlying biology and genomics.
- Luspatercept is new standard of care as upfront therapy for LR-MDS RS+.
- Imetelstat is new approved option for treating anemia in LR-MDS, and activity is retained after Luspatercept failure.
- AHSCT remains only curative options and lack of response to treatment prior to transplant should not exclude patients.
- Hypomethylating agents remain the standard of care for HR-MDS, awaiting results of VERONA trial to confirm role of venetoclax.
- Post hypomethylating agent failure, targeted therapy such as IDH inhibitors remains best option.

Thank You Rami.Komrokji@moffitt.org

Moffitt MDS team: Only perfect counts !!!

Acknowledgements:

- Our patients and their caregivers
- Moffitt MDS team