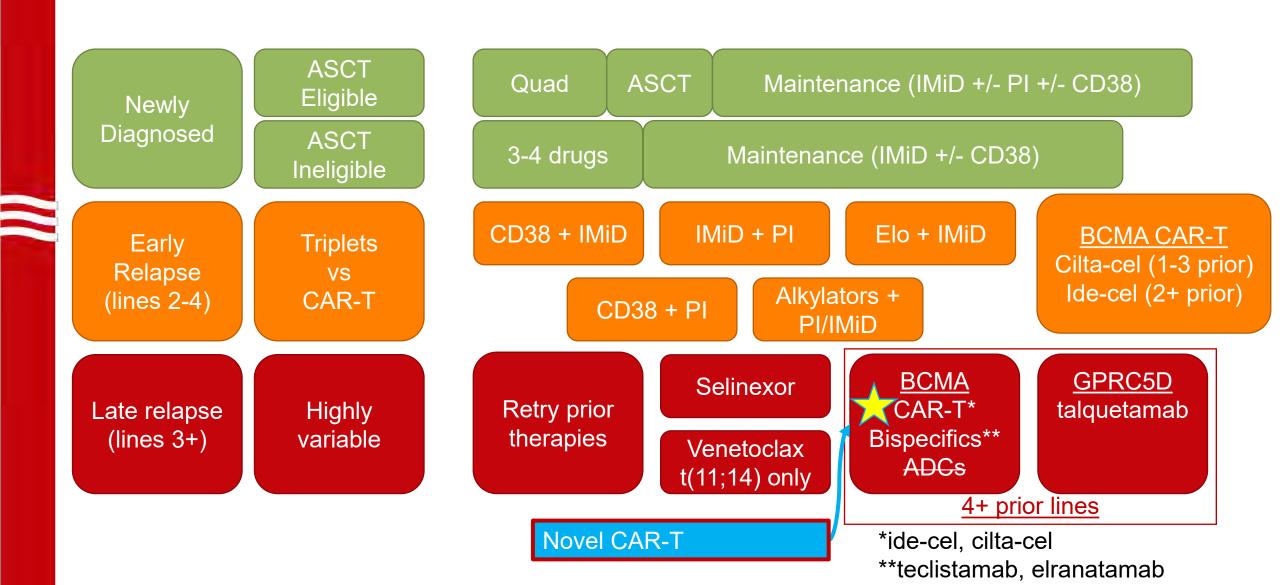


Multiple Myeloma Updates from ASH 2024

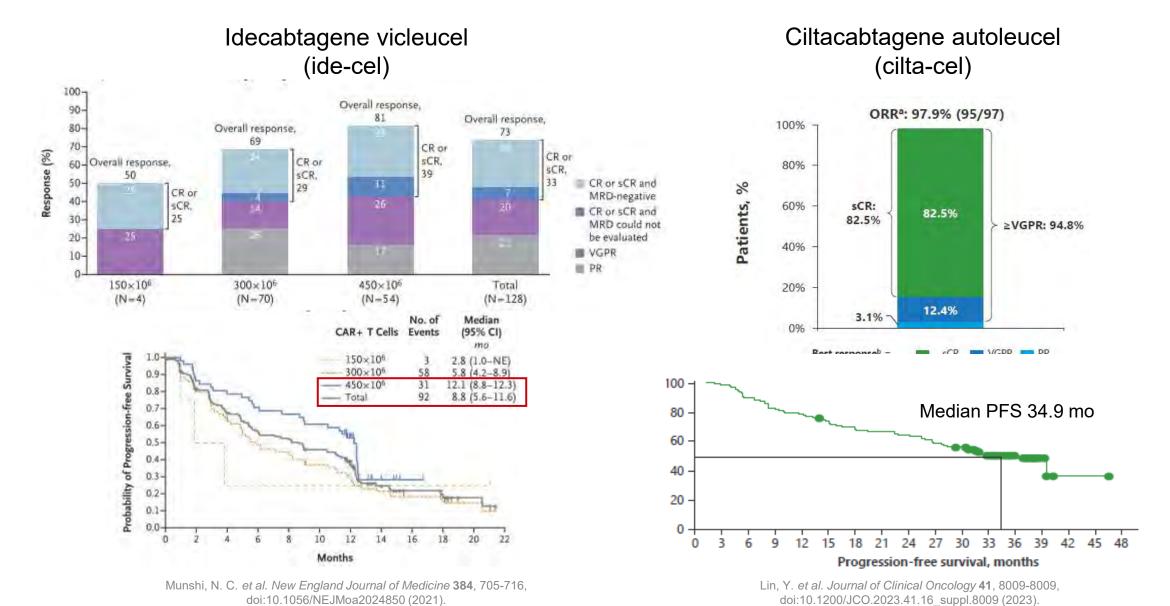
Timothy Schmidt, MD

Assistant Professor

Division of Hematology, Oncology & Palliative Care, Department of Medicine
University of Wisconsin - Carbone Cancer Center



Disclosures

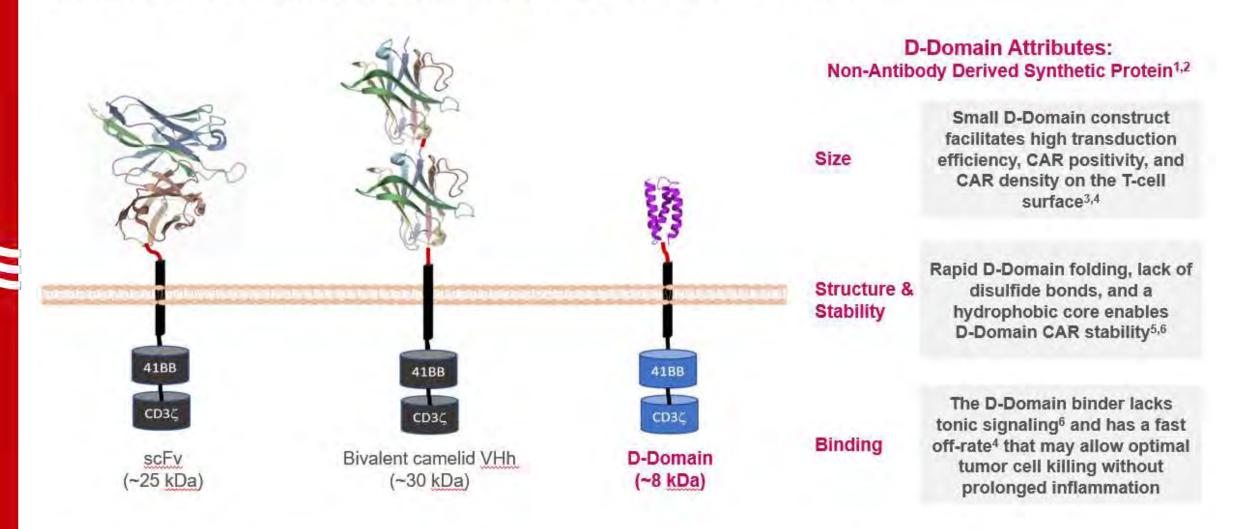

• I will discuss off-label/investigational use of pharmaceuticals in this presentation

Affiliation/Financial Interest	Name of Corporate Organization(s)
Grant/Research Support	Alexion Pharmaceuticals, Bristol-Meyers Squibb, Janssen
Consultant	BiolineRx, Janssen, Pfizer, Sanofi
Speaker's Bureau	
Major Stock Shareholder	
Other Financial or Material Support	

Multiple Myeloma Therapeutic Landscape in 2025

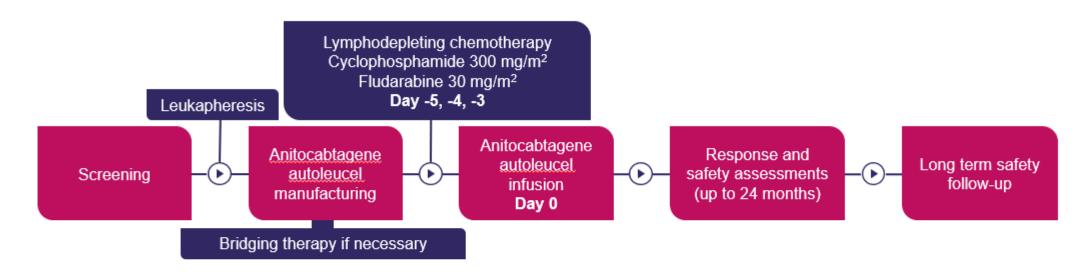
Approved CAR-T therapies in multiple myeloma

Abstract 1031


Phase 2 Registrational Study of Anitocabtagene Autoleucel for the Treatment of Patients with Relapsed and/or Refractory Multiple Myeloma: Preliminary Results From the iMMagine-1 Trial

Ciara Freeman, MD, PhD¹; Binod Dhakal, MD, MS²; Gurbakhash Kaur, MD³; Richard T. Maziarz, MD⁴; Natalie S. Callander, MD⁵; Adam S. Sperling, MD, PhD⁶; Carolina Schinke, MD⁷; Andrzej J. Jakubowiak, MD, PhD⁶; Noa Biran, MD⁶; Douglas W. Sborov, MD, MS¹⁰; Cindy Varga, MD¹¹; Abhinav Deol, MD¹²; Abraham S. Kanate, MD¹³; Mehmet Hakan Kocoglu, MD¹⁴; Melhem Solh, MD¹⁵; Kamalika C. Banerjee, MS, MA¹⁶; Rebecca Chan, MD, PhD¹⁶; Myrna Nahas, MD¹⁷; Ana Kostic, MD¹⁶; Enrique Granados, MD¹⁷; Carolyn C. Jackson, MD, MPH¹⁷; Christopher R. Heery, MD¹⁶; Tim Welliver, MD, PhD¹⁶; Krina Patel, MD, MSc¹⁶; and Matthew J. Frigault, MD, MS¹⁰

1. H. Lee Moffitt Cancer Center, Tampa, FL, USA; 2. Medical College of Wisconsin, Milwaukee, WI, USA; 3. University of Texas Southwestern Medical Center, Dallas, TX, USA; 4. Oregon Health & Science University, Portland, OR, USA; 5. University of Wisconsin Carbone Cancer Center, Madison, WI, USA; 6. Dana-Farber Cancer Institute, Boston, MA, USA; 7. University of Arkansas for Medical Sciences, Little Rock, AR, USA; 8. University of Chicago, Chicago, IL, USA; 9. HMH Hackensack University Medical Center, Hackensack, NJ, USA; 10. University of Utah-Huntsman Cancer Institute, Salt Lake City, UT, USA; 11. Atrium Health Levine Cancer Center, Charlotte, NC, USA; 12. Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA; 13. HonorHealth Cancer Transplant Institute, Scottsdale, AZ, USA; 14. University of Maryland School of Medicine, Baltimore, MD, USA; 15. Northside Hospital, Atlanta, GA, USA; 16. Arcelly, Inc., Redwood City, CA, USA; 17. Kite, a Gilead Company, Santa Monica, CA, USA; 18. MD Anderson Cancer Center, Houston, TX, USA; and 19. Massachusetts General Hospital Cancer Center, Boston, MA, USA


Anitocabtagene autoleucel (anito-cel/CART-ddBCMA)

Autologous BCMA-directed CAR T-cell therapy using a novel, D-Domain binder^{1,2}

¹Rotte, et al. Immuno-Oncology Insights 2022; 3(1), 13–24; ²Frigault, et al. Blood Adv. 2023; 7(5):768-777; ³Cante-Barrett, et al. BMC Res. Notes 2016; 9:13; ⁴Buonato, et al. Mol. Cancer Ther. 2022; 21(7):1171-1183; ⁵Zhu, et al. Proc. Nat. Acad. Sci. 2003; 100(26); 15486-15491; ⁹Qin, et al. Mol. Ther. 2019; 27(7): 1262-1274.

iMMagine-1: Phase 2 Study Design

Key Eligibility Criteria

- Prior <u>IMiD</u>, PI, and CD38-targeted therapy
- Received ≥3 prior lines of therapy
- Refractory to the last line of therapy
- ECOG PS of 0 or 1
- Evidence of measurable disease

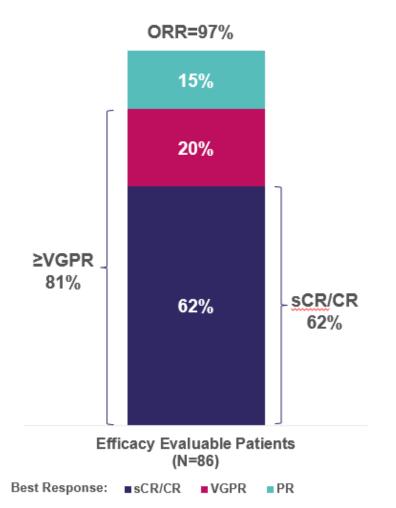
Target Dose of 115 x 106 CAR+ T cells

Primary Endpoint:

ORR, per 2016 IMWG criteria

Key Secondary Endpoints:

- CR/sCR rate, per 2016 IMWG criteria
- ORR in patients limited to 3 prior LOT, per 2016 IMWG criteria

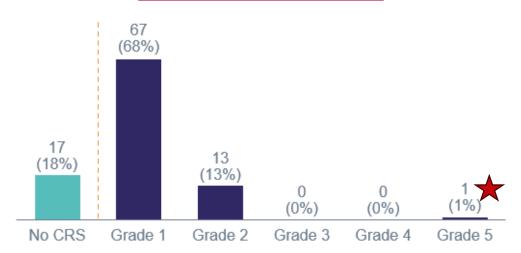

iMMagine-1: Patient and Disease Characteristics

Characteristics	Safety Evaluable (n=98)	Efficacy Evaluable (n=86)
Age, median (min - max) Age ≥ 65 Age ≥ 75	65 (38 – 78) 51 (52%) 10 (10%)	65 (38 – 78) 47 (55%) 10 (12%)
Gender (male / female)	55 (56%) / 43 (44%)	48 (56%) / 38 (44%)
Race White Black / African American Asian / Other	79 (81%) 9 (9%) 10 (10%)	70 (81%) 8 (9%) 8 (9%)
ECOG PSa 0 / 1	45 (46%) / 53 (54%)	39 (45%) / 47 (55%)
High Risk Prognostic Feature	52 (53%)	45 (52%)
BMPC ≥60%	7 (7%)	5 (6%)
ISS Stage III (B2M ≥ 5.5)	4 (4%)	3 (4%)
Extramedullary disease	16 (16%)	13 (15%)
High Risk Cytogenetics ^c	39 (40%)	33 (38%)
Refractory to last line of therapy	98 (100%)	86 (100%)
Triple refractory	85 (87%)	74 (86%)
Penta refractory	41 (42%)	37 (43%)
Prior Lines of Therapy, median (min - max) 3 Prior LOT	4 (3 – 8) 45 (46%)	4 (3 – 8) 37 (43%)
Time since diagnosis, median (min-max)	7.2 (1.0 – 23.1)	7.5 (1.0 – 23.1)
Prior ASCT	73 (75%)	64 (74%)
Bridging therapy ^d	65 (66%)	61 (71%)
Outpatient administration	8 (8%)	5 (6%)

a) Eastern Cooperative Oncology Group Performance Status Scale; b) EMD is a form of Multiple Myeloma characterized by the presence of a non-bone based plasmacytoma; c) Defined as the presence of Del 17p, t(14;16), or t(4;14); d) Bridging agents were limited only to those previously received.

iMMagine-1: Overall Response Rate and MRD Negativity

Efficacy Evaluable Patients (N=86)

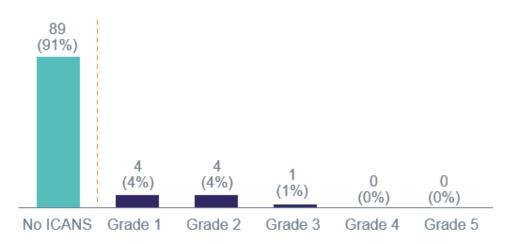


- At a median follow-up of 9.5 months, responses were ongoing in 80.2% of 86 patients
- 93.1% (n=54/58) of evaluable* patients MRD negative at minimum of 10⁻⁵ sensitivity

	Evaluable Patients	Months (min - max)
Median time to first response	84	1 (0.9 - 7.3)
Median time to MRD negativity of 10 ⁻⁵ or lower	58	1.0 (0.9 - 6.4)

iMMagine-1: Cytokine Release Syndrome

Maximum CRS Grade (N=98)


- In the 82% (81/98) of patients with CRS, the median onset was 4 days
- 86% (84/98) of patients had CRS Grade 1 or less, including 18% (17/98) with no CRS
- % of patients with either no CRS or CRS that resolved by:
 - ≤7 days of anito-cel infusion: 63% (62/98)
 - ≤10 days of anito-cel infusion: 93% (91/98)
 - ≤14 days of anito-cel infusion: 98% (96/98)

Cytokine Release Syndrome (CRS) Per ASTCT criteria	Safety Evaluable Patients N=98
Median onset (min-max)	4 days (1-17 days)
Median duration (min-max)	3 days (1-9 days)
Supportive Measures	
Tocilizumab	70% (69/98)
Dexamethasone	63% (62/98)
Anakinra	7% (7/98)
Vasopressor used	1% (1/98)
Intubation/mechanical ventilation	1% (1/98)

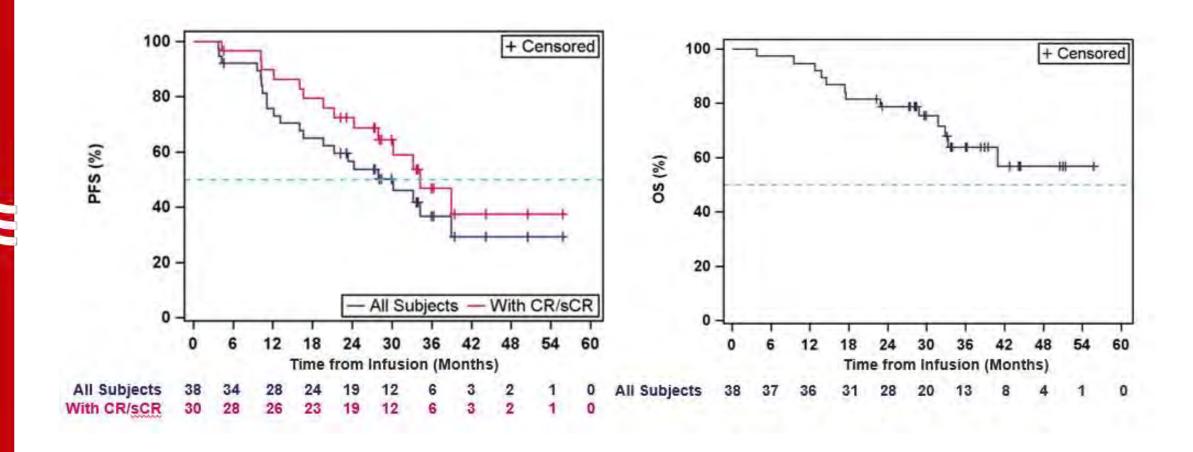
- CRS management per protocol was in line with standard medical practice with no prophylactic administration of tocilizumab or dexamethasone
 - For CRS onset in the first 48 hours, tocilizumab and dexamethasone were protocol recommended
 - For CRS onset after the first 48 hours, if tocilizumab was administered at investigator discretion, dexamethasone was also recommended

iMMagine-1: Immune-effector Cell-associated Neurotoxicity Syndrome (ICANS)

Maximum ICANS Grade (N=98)

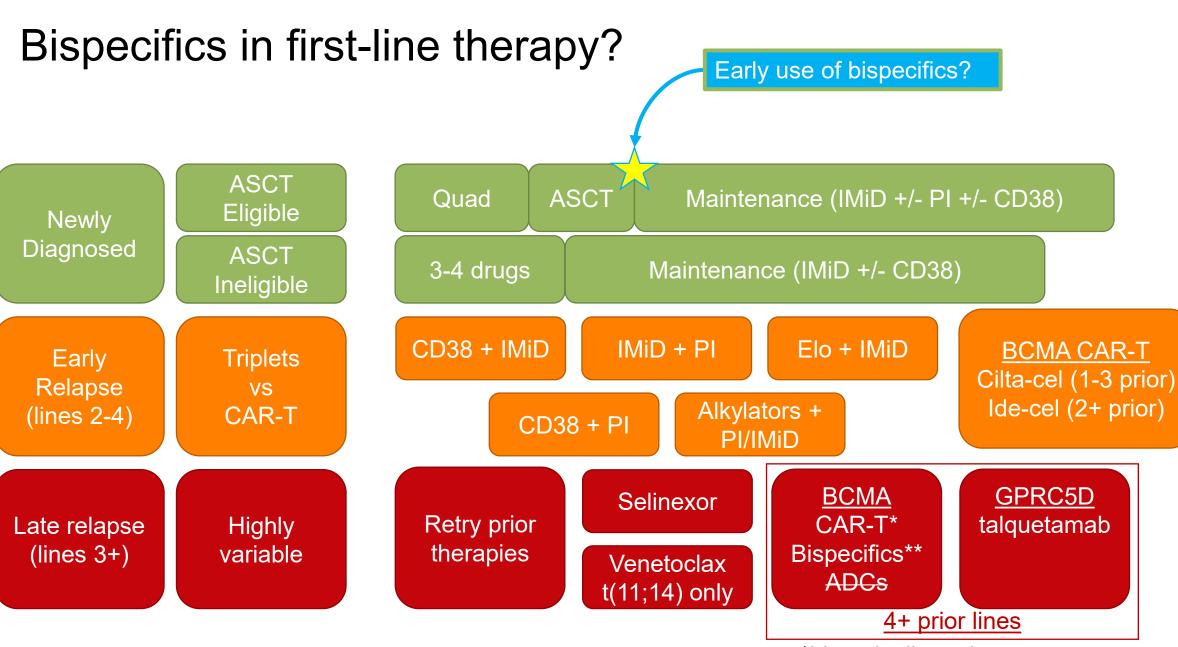
9% (9/98) of patients had ICANS of any grade; all cases resolved

No delayed or non-ICANS <u>neurotoxicities</u> were observed, including no incidence of Parkinsonism, no cranial nerve palsies, and no Guillain-Barré syndrome (n=98)


 Similarly, no delayed or non-ICANS neurotoxicities have been observed in the Phase 1 study¹ (n=38, median follow-up of 38.1 months with minimum follow-up of 25 months)

ICANS Per ASTCT criteria	Safety Evaluable Patients N=98
Median onset (min-max)	7 days (2 - 10ª days)
Median duration (min-max)	4 days (1 - 10 ^b days)
Toxicity Management	
Tocilizumab	3% (3/98)
Dexamethasone	5% (5/98)
Anakinra	1% (1/98)
Siltuximab	1% (1/98)

^{**}With the exception of n=1 Grade 1 ICANS (Grade 1 confusion), onset 34 days post infusion, 1 day duration to resolution


^b With the exception of n=1 max Grade 2 ICANS with 29-day duration to resolution

Background (ASH Poster 4825): Anito-cel Phase 1 demonstrated mPFS of 30.2 months in a 4L+ RRMM population, of whom 68% had high-risk features

My take

- Appears to be similarly efficacious to cilta-cel, probably not more toxic
- Effective bridging therapy prior to infusion is key
- Need more data before saying for certain whether there is a significantly lower risk of delayed neurotoxicity, but encouraging that it hasn't been seen yet
- Likely to gain regulatory approval in late relapse

*ide-cel, cilta-cel

**teclistamab, elranatamab

Rationale for earlier use

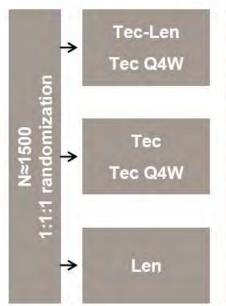
- Better T-cell profile, potentially more effective
- CRS tends to be milder if there is a lower disease burden
- Potent therapy with high toxicity profile, perhaps can optimize efficacy and safety by using earlier

Phase 3 Study of Teclistamab in Combination With Lenalidomide and Teclistamab Alone vs Lenalidomide Alone in Newly Diagnosed Multiple Myeloma as Maintenance Therapy Following Autologous Stem Cell Transplantation: Safety Run-in Results From the EMN30/MajesTEC-4 Trial*

*ClinicalTrials.gov Identifier: NCT05243797; sponsored by EMN in collaboration with Janssen Research & Development, LLC

Elena Zamagni¹, Tobias Silzle², Ivan Špička³, Sabrin Tahri⁴, Sarah Lonergan⁴, Inger Nijhof⁵, Antonietta Pia Falcone⁶, Evangelos Terpos⁻, Jakub Radocha⁶, Roberto Mina⁶, Guldane Cengiz Seval¹⁰, Meral Beksac¹⁰, Cesar Rodriguez¹¹, Marcelo C Pasquini¹², Michel Delforge¹³, Vania Hungria¹⁴, Donna Reece¹⁵, Philippe Moreau¹⁶, Yael C Cohen¹७, Kihyun Kim¹⁶, Dominik Dytfeld¹⁰, Jiři Minařik²⁰, Irene Strassl²¹, Jelena Bila²², Martin Schreder²³, Janusz Krawczyk²⁴, Fredrik Schjesvold²⁵, Caroline Cicin-Sain²⁶, Christoph Driessen²⁶, Gordon Cook²⁷, Lugui Qiu²⁶, Gonzalo M Garate²⁰, Agoston Gyula Szabo³⁰, Roman Hájek³¹, Marc S Raab³², Silvia Mangiacavalli³³, Hermann Einsele³⁴, Andrew Spencer³⁵, Mario Boccadoro³⁶, Helen Vassalou³⁷, Lixia Pei³⁶, Yingqi Shi³⁶, Maria Krevvata³ց, Ryan Gruber³ց, Caline Sakabedoyan⁴⁰, Margaret Cobb⁴¹, Jagoda Jasielec³ී, Himal Amin³՞₀, Rachel Kobos³ී, Pieter Sonneveld⁴⁴², Niels WCJ van de Donk⁴³

¹IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", and Università di Bologna, Bologna, Italy; ²Cantonal Hospital St. Gallen, St. Gallen, Switzerland; ³Charles University and General Hospital, Prague, Czech Republic; ⁴Stichting European Myeloma Network, Rotterdam, The Netherlands; ⁵St. Antonius Hospital Nieuwegein, The Netherlands; ⁵IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy; ⁷University of Athens, School of Medicine, Athens, Greece; ⁸University Hospital Hradec Kralove and Charles University, Hradec Kralove, Czech Republic; ⁹AOU Città della Salute e della Scienza di Torino and University of Torino, Torino, Italy; ¹⁰Ankara University, Ankara, Türkiye; ¹¹Icahn School of Medicine at Mount Sinai, New York, NY, USA; ¹²Medical College of Wisconsin, Milwaukee, WI, USA; ¹³University of Leuven, Leuven, Belgium; ¹⁴Clínica Médica São Germano, São Paulo, Brazil; ¹⁵Princess Margaret Cancer Centre, Toronto, ON, Canada; ¹⁶University Hospital Hôtel-Dieu, Nantes, France; ¹⁷Tel Aviv Sourasky (Ichilov) Medical Center and Tel Aviv University, Tel Aviv, Israel; ¹⁸Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea; ¹⁹Poznan University of Medical Sciences, Poznań, Poland; ²⁰University Hospital and Palacký University Olomouc, Olomouc, Czech Republic; ²¹Ordensklinikum Linz Hospital, Linz, Austria; ²²University of Belgrade, University of Solo, Oslo, Norway; ²³Kantonsspital St. Gallen, Switzerland; ²⁴University Hospital Galway, Ireland and National University of Ireland, Galway, Ireland; ²⁵Coslo Myeloma Center and University of Solo, Oslo, Norway; ²⁶Kantonsspital St. Gallen, Switzerland; ²⁷University Hospital Rigshospitalet, Copenhagen, Denmark; ³¹University Hospital Ostrava and University of Ostrava, Ostrava, Ostrava, Ostrava, Czech Republic; ³²University Hospital Heidelberg, Heidelberg, Germany; ³⁵Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; ³⁴University Hospital Würzbur


EMN30/MajesTEC-4: Study Design

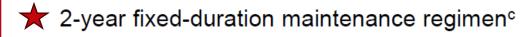
Key eligibility criteria:

- NDMM
- ECOG PS score of 0-2
- Received 4-6 cycles of 3- or 4-drug induction therapy (PI and/or IMiD ± anti-CD38 antibody) and ASCT^a ± consolidation with ≥PR

Phase 3, randomized study

Dual primary endpoints:

- · PFS
- 12-month MRD-negative CR (by NGF; 10⁻⁵)


Select secondary endpoints:

- · 08
- · ≥CR
- CR conversion
- MRD-negative conversion
- MRD negativity/sustained MRD negativity
- PFS2
- TTNT
- Safety

EMN30/MajesTEC-4 SRI: Dosing

	Cycle 1	Cycle 2	Cycles 3-6	Cycles 7-26
Cohort 1: Tec-Len Tec QW → Q4W	Tec step up ^a + Tec 1.5 mg/kg on D8, D15, and D22	Tec 1.5 mg/kg QW + Len	Tec 3.0 mg/kg Q2W + Len	Tec 3.0 mg/kg Q4W + Len
Cohort 2: Tec-Len Tec Q4W	Tec step up ^a + Tec 1.5 mg/kg on D8 and D15	Tec 3.0 mg/kg Q4W + Len		
Cohort 3: Tec Tec Q4W	Tec step up ^a + Tec 1.5 mg/kg on D8 and D15	Tec 3.0 mg/kg Q4W		

• Len was initiated at 10 mg/day^b from Cycles 2 to 4, followed by 15 mg/day in Cycles 5 to 26, if tolerated

EMN30/MajesTEC-4 SRI: Nonhematologic TEAEs

	Tec- (QW -)	ort 1: -Len • Q4W) •32)	Tec- (Q4	ort 2: -Len 4W) =32)	To (Q4	ort 3: ec 4W) =30)
Median follow-up, mo	21	.1	9	.2	9	.2
TEAEs,ª n (%)	Any grade	Grade 3/4	Any grade	Grade 3/4	Any grade	Grade 3/4
Nonhematologic AEs ^b						
CRS	16 (50.0)	0	13 (40.6)	0	13 (43.3)	0
URTI	20 (62.5)	1 (3.1)	13 (40.6)	0	8 (26.7)	0
Cough	15 (46.9)	0	6 (18.8)	0	8 (26.7)	0
Diarrhea	13 (40.6)	3 (9.4)	9 (28.1)	1 (3.1)	6 (20.0)	0
Injection-site erythema	7 (21.9)	0	12 (37.5)	0	8 (26.7)	0
COVID-19	12 (37.5)	1 (3.1)	5 (15.6)	0	9 (30.0)	1 (3.3)
Fatigue	10 (31.3)	1 (3.1)	8 (25.0)	1 (3.1)	5 (16.7)	0
Pneumonia	9 (28.1)	4 (12.5)	3 (9.4)	0	2 (6.7)	1 (3.3)

- Among the most common nonhematologic TEAEs, rates of grade 3/4 events were low
- All CRS events were grade 1/2, mostly occurring during Tec step-up dosing
 - 37.2% after Step-up Dose 1
 - 8.5% after Step-up Dose 2
 - 5.3% after Treatment Dose 1
 - No discontinuations due to CRS
- No ICANS

EMN30/MajesTEC-4 SRI: Hematologic TEAEs

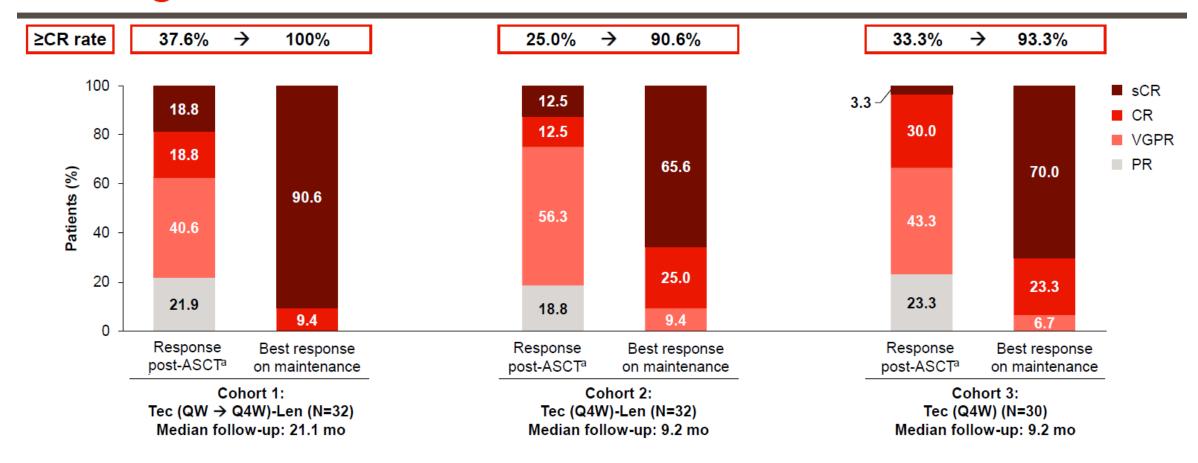
	Cohort 1: Tec-Len (QW → Q4W) (N=32)		Cohort 2: Tec-Len (Q4W) (N=32)		Cohort 3: Tec (Q4W) (N=30)	
Median follow-up, mo	21	.1	9	.2	9.	.2
TEAEs,a n (%)	Any grade	Grade 3/4	Any grade	Grade 3/4	Any grade	Grade 3/4
Any TEAE	32 (100)	32 (100)	32 (100)	27 (84.4)	30 (100)	17 (56.7)
Hematologic Aes						
Neutropenia	30 (93.8)	30 (93.8)	21 (65.6)	20 (62.5)	17 (56.7)	14 (46.7)
Leukopenia	9 (28.1)	3 (9.4)	1 (3.1)	0	1 (3.3)	1 (3.3)
Lymphopenia	2 (6.3)	1 (3.1)	4 (12.5)	4 (12.5)	4 (13.3)	4 (13.3)
Thrombocytopenia	6 (18.8)	2 (6.2)	0	0	2 (6.7)	0
Febrile neutropenia	3 (9.4)	3 (9.4)	3 (9.4)	3 (9.4)	0	0
Anemia	3 (9.4)	0	1 (3.1)	1 (3.1)	1 (3.3)	0
Eosinophilia	1 (3.1)	1 (3.1)	1 (3.1)	1 (3.1)	0	0

 Cumulative incidence of grade 3/4 neutropenia at 6 months:

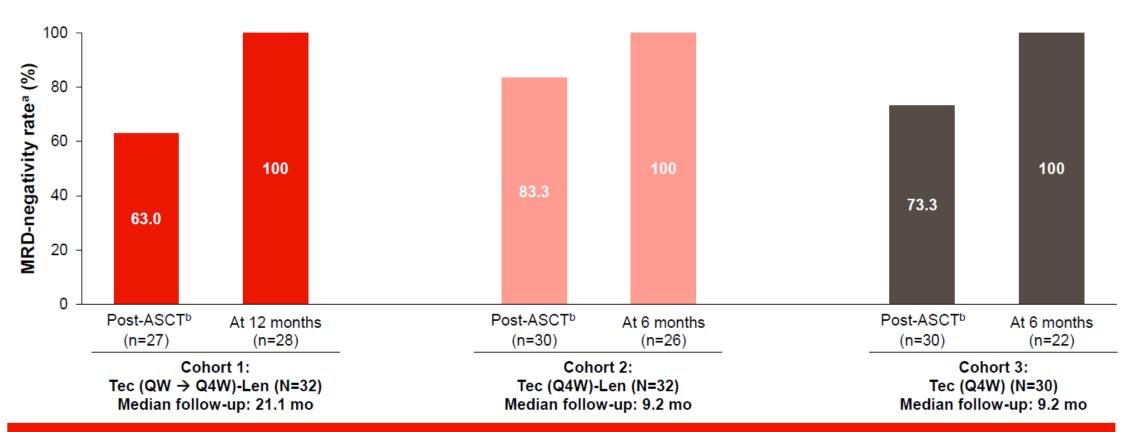
- Cohort 1: 81.3%

- Cohort 2: 56.3%

- Cohort 3: 40.0%


- Median relative dose intensity:
 - 95.5% to 99.7% for Tec
 - 58.4% to 61.5% for Len
- Low rates of treatment discontinuation due to TEAEs (5.3% overall)

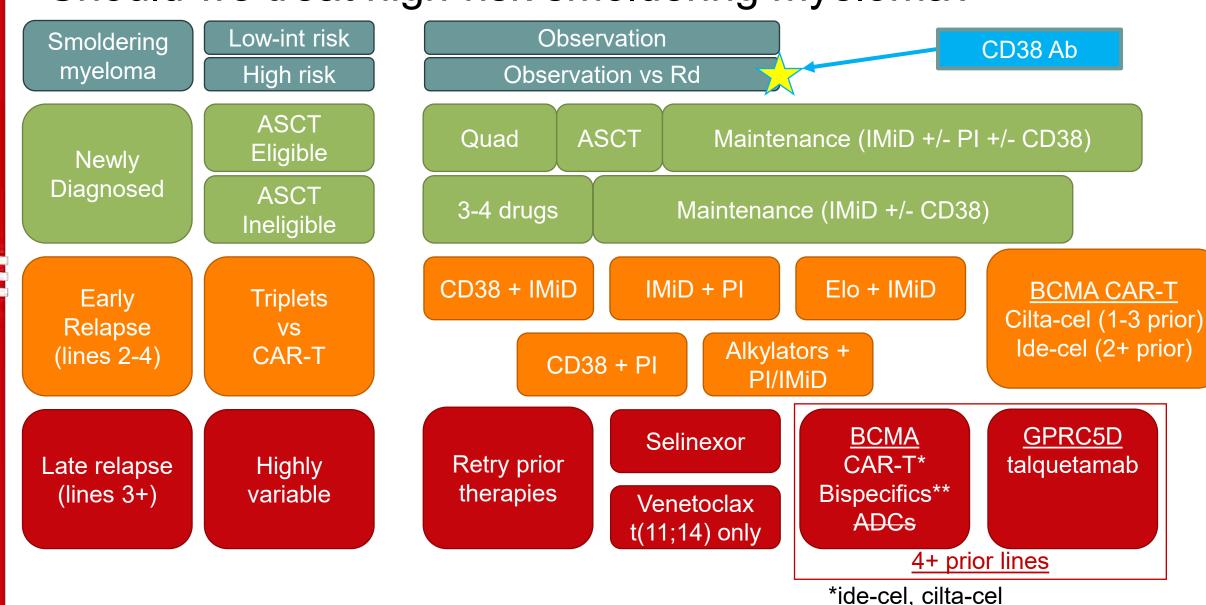
EMN30/MajesTEC-4 SRI: Infections and Hypogammaglobulinemia


	Cohort 1: Tec-Len (QW → Q4W) (N=32)		Cohort 2: Tec-Len (Q4W) (N=32)		Cohort 3: Tec (Q4W) (N=30)	
Median follow-up, mo	21	1.1	9	.2	9	.2
TEAEs, ^a n (%)	Any grade	Grade 3/4	Any grade	Grade 3/4	Any grade	Grade 3/4
Any infection	30 (93.8)	12 (37.5)	25 (78.1)	9 (28.1)	23 (76.7)	6 (20.0)
Most common infections	b					
URTI	20 (62.5)	1 (3.1)	13 (40.6)	0	8 (26.7)	0
COVID-19	12 (37.5)	1 (3.1)	5 (15.6)	0	9 (30.0)	1 (3.3)
Pneumonia	9 (28.1)	4 (12.5)	3 (9.4)	0	2 (6.7)	1 (3.3)
Nasopharyngitis	6 (18.8)	0	0	0	3 (10.0)	0

- Hypogammaglobulinemia^c reported in:
 - Cohort 1: 31 (96.9%) patients
 - Cohort 2: 25 (78.1%) patients
 - Cohort 3: 28 (93.3%) patients
- All received ≥1 dose of IVIg or SCIg
- One grade 5 COVID-19 TEAE occurred in Cohort 2
- Infection prophylaxis, including Ig replacement, was strongly recommended^d

EMN30/MajesTEC-4 SRI: Response Rates Post-ASCT and During Maintenance

EMN30/MajesTEC-4 SRI: MRD Negativity (10⁻⁵) in Evaluable Patients Post-ASCT and During Maintenance

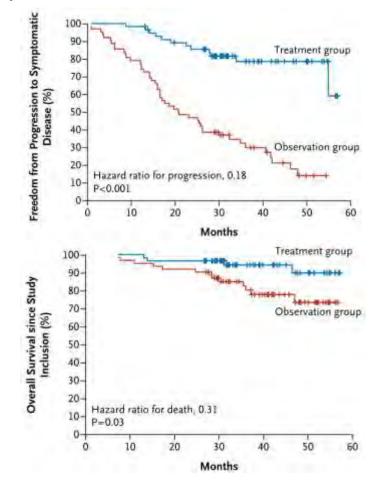


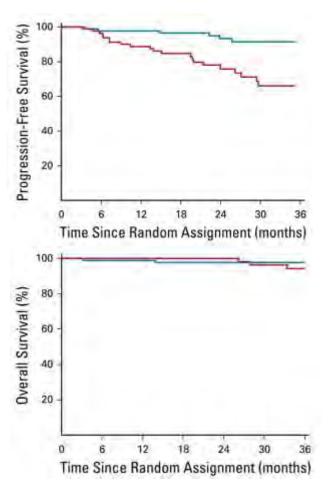
100% of evaluable patients were MRD negative during maintenance

My take

- Remarkable efficacy...but need more data and longer follow up
- Not sure that the IMiD adds much to BCMA BsAb in this setting aside from toxicity
- Will infectious complications negate the benefit from deeper response?
- Optimal duration of therapy?
- Will it be helpful for all patients, or best utilized in certain populations?
 - High risk
 - Standard risk with high MRD burden
- Perhaps this is the best way to implement risk and response-adapted therapy and limit duration of maintenance

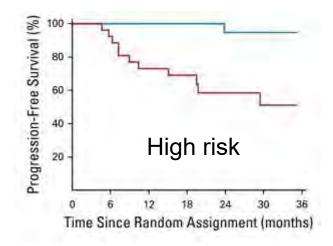
Should we treat high-risk smoldering myeloma?

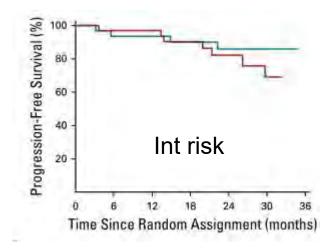


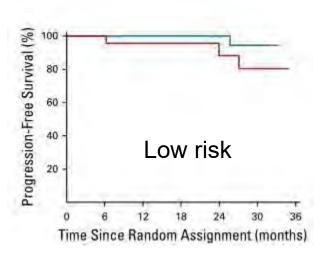

**teclistamab, elranatamab

Low intensity therapy in SMM

- Early treatment with len +/- dex prolongs time to developing active myeloma
- But impact on overall survival remains unclear




Mateos, et al, NEJM 2013 Lonial, et al, JCO 2020


Smoldering myeloma

- Patients at the highest risk of progression to multiple myeloma seem to derive the most benefit from early intervention
- 20/2/20 system
 - BMPC ≥ 20%
 - M-spike ≥ 2 g/dL
 - FLCr ≥ 20:1

Risk status	# of risk factors	2-year risk PD
Low	0	10%
Intermediate	1	26%
High	2-3	47%

Many questions remain

- Best type of therapy?
- Duration of therapy?
- How to define disease progression?
- Does early treatment impact efficacy of subsequent myeloma therapy?
- What is the best way to define high risk SMM?

Phase 3 Randomized Study of Daratumumab Monotherapy Versus Active Monitoring in Patients With High-risk Smoldering Multiple Myeloma: Primary Results of the AQUILA Study

Meletios A Dimopoulos¹, Peter M Voorhees², Fredrik Schjesvold³, Yael C Cohen⁴, Vania Hungria⁵, Irwindeep Sandhu⁶, Jindriska Lindsay⁷, Ross I Baker⁸, Kenshi Suzuki⁹, Hiroshi Kosugi¹⁰, Mark-David Levin¹¹, Meral Beksac¹², Keith Stockerl-Goldstein¹³, Albert Oriol¹⁴, Gabor Mikala¹⁵, Gonzalo Garate¹⁶, Koen Theunissen¹⁷, Ivan Spicka¹⁸, Anne K Mylin¹⁹, Sara Bringhen²⁰, Katarina Uttervall²¹, Bartosz Pula²², Eva Medvedova²³, Andrew J Cowan²⁴, Philippe Moreau²⁵, Maria-Victoria Mateos²⁶, Hartmut Goldschmidt²⁷, Tahamtan Ahmadi²⁸, Linlin Sha²⁹, Els Rousseau³⁰, Liang Li²⁹, Robyn M Dennis³¹, Robin Carson³², S Vincent Rajkumar³³

¹National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece; ²Levine Cancer Institute, Atrium Health Wake Forest University School of Medicine, Charlotte, NC, USA; ³Oslo Myeloma Center, Department of Hematology, Oslo University Hospital, Oslo, Norway; ⁴Tel-Aviv Sourasky (Ichilov) Medical Center and Tel Aviv University, Tel Aviv, Israel; ⁵Clínica Medica São Germano, São Paulo, Brazil; ⁶Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada; ¬Kent and Canterbury Hospital, Kent, UK; ³Perth Blood Institute, Murdoch University, Perth, Australia; ⁶Japanese Red Cross Medical Center, Tokyo, Japan; ¹¹Ogaki Municipal Hospital, Ogaki City, Japan; ¹¹Albert Schweitzer Hospital, Dordrecht, The Netherlands; ¹²Ankara University, Ankara, Turkey; ¹³Washington University School of Medicine, St. Louis, MO, USA; ¹⁴Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias I Pujol, Barcelona, Spain; ¹⁵South-Pest Central Hospital, National Institute for Hematology and Infectious Diseases, Budapest, Hungary; ¹⁶Hospital Alemán, Buenos Aires, Argentina; ¹¹Jessa Hospital, Hasselt, Belgium; ¹⁶Charles University and General Hospital, Prague, Czech Republic; ¹⁶Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; ²⁰SSD Clinical Trials in Oncol-ematologia e Mieloma Multiplo, AOU Città della Salute e della Scienza di Torino, Torino, Italy; ²¹Medical Unit Hematology, Karolinska University Hospital, Stockholm, Sweden; ²²Institute of Hematology and Transfusion Medicine, Warszawa, Poland; ²³Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; ²⁴University of Washington and Fred Hutchinson Cancer Center, Seattle, WA, USA; ²⁵University Hospital Hôtel-Dieu, Nantes, France; ²⁶University Hospital of Salamanca/IBSAL/Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain; ²⁻GMMG Study Group at University Hospital Heidelberg, Internal Medicine V, Heidelberg, Germany; ²⁶Genmanb US Inc., Plainsboro, NJ, USA; ²⁶Janssen Research & Development, LLC, Sprin

AQUILA: Study Design

during screening

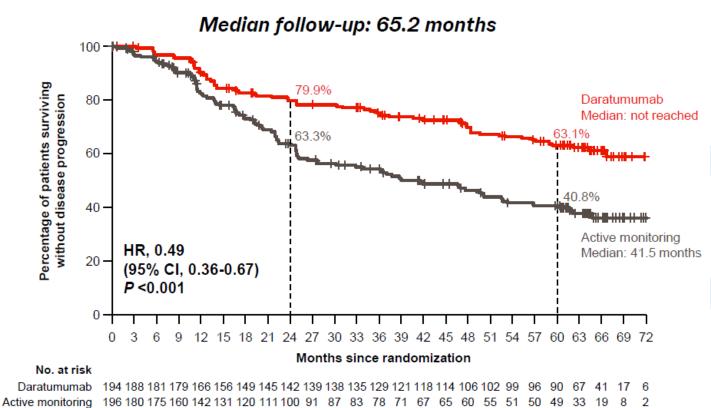
AQUILA enrollment period: December 2017 and May 2019, at 124 sites in 23 countries

Screening Treatment/active monitoring phase Follow-up phase Key eligibility criteria: DARA monotherapy 330) ≥18 years of age Efficacy follow-up 1800 mg SCb QW Cycles 1-2, · Confirmed SMM diagnosis until progression randomization (N = Q2W Cycles 3-6, Q4W thereafter (per IMWG criteria) for ≤5 years by SLIM-CRAB in 28-day cycles until 39 cycles/36 months* ECOG PS score of 0 or 1 Clonal BMPCs > 10% and > 1 of the Survival follow-up following risk factors: Active monitoring every 6 months - Serum M-protein ≥30 g/L until end of study - IgA SMM No disease-specific treatment, - Immunoparesis with reduction of with AE monitoring up to 36 months* 2 uninvolved lg isotypes - Serum involved:uninvolved FLC *or confirmed disease progression (whichever occurred first) ratio >8 and <100 Clonal BMPCs >50% to <60% Disease evaluation schedule Laboratory efficacy – Every 12 weeks by central lab until disease progression Stratified by All patients were required to have number of risk Imaging (CT/PET-CT, MRI) - Yearly (central review) CT/PET-CT and MRI imaging

factorsa for

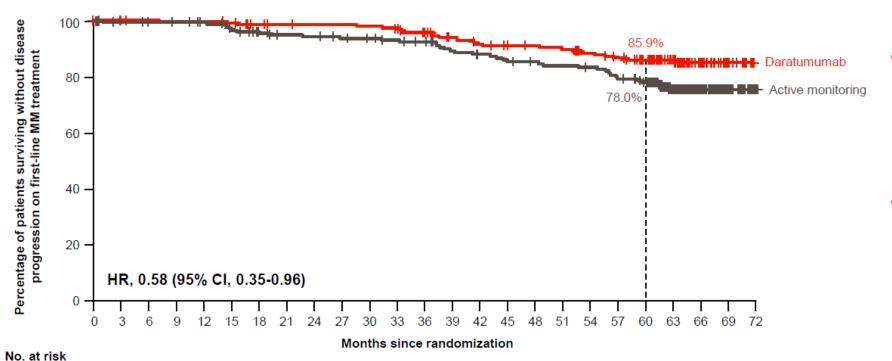
progression to MM (<3 vs ≥3)

Primary endpoint:


· PFS by IRC per IMWG SLiM-CRAB criteriac

Key secondary endpoints:

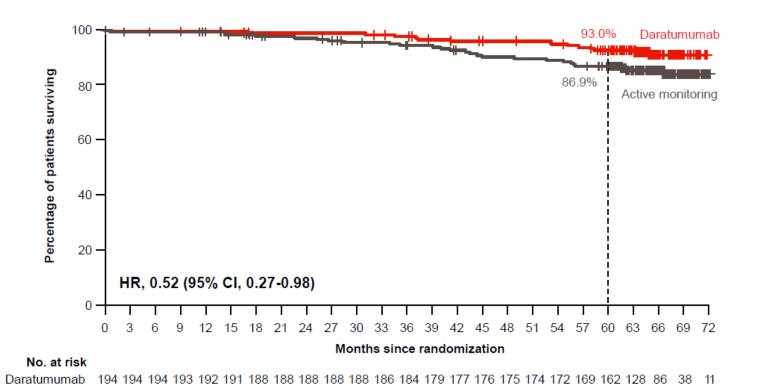
- · ORR
- · Time to first-line treatment for MM
- · PFS on first-line treatment for MM
- Overall survival


Bone marrow - At least every 2 years

AQUILA: Progression to MM by IMWG SLiM-CRAB Criteria (IRC Assessment)

	DARA (n = 194)	Active monitoring (n = 196)
PFS event, n (%)	67 (34.5)	99 (50.5)
Death without disease progression	5 (7.5)	5 (5.1)
Disease progression ^{a,b}	62 (92.5)	94 (94.9)
CRAB criteria ^c	12 (19.4)	34 (36.2)
Calcium elevation	0	2 (2.1)
Renal insufficiency ^d	0	0
Anemia	2 (3.2)	14 (14.9)
Bone disease	10 (16.1)	18 (19.1)
SLiM criteria ^c	50 (80.6)	65 (69.1)
Clonal BMPCs	5 (8.1)	16 (17.0)
Serum FLC	33 (53.2)	33 (35.1)
Focal lesion by MRI	12 (19.4)	16 (17.0)

AQUILA: PFS on First-line Treatment for MM (PFS2)a



194 189 187 186 186 184 179 177 176 176 175 172 166 158 153 150 148 147 142 137 129

196 186 184 183 179 172 165 160 159 155 153 150 145 139 135 131 129 127 125 119 112 78 48 24

- VRd was the most common first-line treatment for MM (DARA, 9.8%; active monitoring, 14.8%)
- 25.0% (16/64) in the DARA group and 33.3% (35/105) in the active monitoring group received anti-CD38 regimens

AQUILA: Overall Survival

Active monitoring 196 192 191 191 187 183 179 177 176 173 169 168 165 164 159 155 154 153 149 144 108 68 34 9

*Deaths due to an event occurring after the AE reporting
window (ie, events that happened after patient started
subsequent therapy or >30 days after last dose) or deaths
with unknown reason.

Disease progression 3 9 ΑE Other* 10 13

Deaths, n (%)

Primary cause, n

DARA

(n = 194)

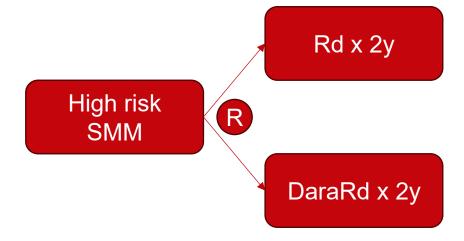
15 (7.7)

Active

monitoring

(n = 196)

26 (13.3)


AQUILA: AEs of Special Interest

Event, n (%)	DARA (n = 193)	Active monitoring (n = 196)
Systemic infusion-related reactions	32 (16.6)	_
Grade 3 or 4	2 (1.0)	_
Local injection-site reactions	53 (27.5)	_
Grade 3 or 4	0	_
Second primary malignancies	18 (9.3)	20 (10.2)
Noncutaneous	9 (4.7)	11 (5.6)
Cutaneous	7 (3.6)	3 (1.5)
Hematologic	3 (1.6)	6 (3.1)

Event, n (%)	DARA (n = 193)	Active monitoring (n = 196)
Cytopenias (all grades)	23 (11.9)	24 (12.2)
Neutropenia	13 (6.7)	5 (2.6)
Anemia	9 (4.7)	19 (9.7)
Thrombocytopenia	4 (2.1)	3 (1.5)
Lymphopenia	3 (1.6)	1 (0.5)
Grade 3 or 4 infections	31 (16.1)	9 (4.6)
Number of grade 3 or 4 infections	37	11
Recovered or resolved	35 (94.6)	8 (72.7)
Median duration of infection	9 days	5 days

My take

- Likely to generate regulatory approval for dara in SMM
- Early intervention with dara probably doesn't harm most patients.
- Better tolerated than lenalidomide
- Statistical benefit is clear. Meaningful clinical benefit is modest
- We still need a better system to identify which patients are best suited for early therapy
- Added rationale for the ongoing EAA173 trial

Thank you!

Email: tschmidt@medicine.wisc.edu

Cell phone: (314) 413-3434

Twitter/X: @TMSchmidtMD

