Lung Transplant Continuous Distribution

Opportunities for Continuous Improvement

Heather Strah

Internal Medicine: Pulmonary, Critical Care and Sleep

Disclosures

I have no financial relationships with any ACCME ineligible companies.

Objectives

- Compare the previous lung allocation score with current composite allocation score
- Dissect the current composite allocation score attributes
- Address the urgent ABO modification
- Explore opportunities for further optimization for biologically disadvantaged candidates

Lung Transplantation

- Surgical treatment for end-stage lung disease
 - Interstitial and fibrotic lung disease (~50% of lung transplants)
 - COPD
 - Pulmonary hypertension
 - All other lung diseases
 - Cystic Fibrosis
- Extend life and improve quality
- Lowest survival of any solid organ transplant
 - Waitlist
 - 1-year
 - Long-term

Evolution of Lung Allocation

< 2005

- Loosely prioritized by severity of illness
- Primarily Wait timebased
- Heavily Geographic

2005-2023

- Lung Allocation Score
 - Waitlist urgency
 - Post transplant survival
- Heavily geographic

4 years of preparation

2023

- Continuous distribution
- Composite allocation score

Comparison of Two Allocation Scores

Waitlist Survival

- Age
- Bilirubin
- BMI
- Assisted Ventilation
- Creatinine
- Diagnosis group
- Functional status
- Oxygen need at rest
- pCO2
- pCO2 increase of at least 15%
- PA systolic pressure
- Six-minute walk distance

Miller, E. Public Comment Proposal: Establish Continuous Distribution of Lungs. 2021.

Post Transplant Survival

- Age
- Creatinine
- Cardiac Index
- Assisted ventilation
- Diagnosis group
- Functional status
- Six-minute walk distance

Scoring Simulations: Waitlist Urgency

1:1 Waitlist survival: Post-transplant survival

2:1 Waitlist survival: Post-transplant survival

Scoring simulations: Post-transplant Survival

WLS PTS Bio PLD Pedi

Aspirational transplant equity

Increased transplant rate

Reduced waitlist mortality

Faster transplants for sickest patients

- Medical urgency curve demonstrates right-skewed distribution
- Candidates with medical urgency scores above the 95th percentile have median wait time less than a week.

Medical Urgency	Number Waiting	25th percentile	Median	75th percentile	percentile	95th percentile	99th percentile
Number of Points	972	0.1275	0.3275	Ф#950	1.4730	2.5700	18.9475
Percentage of Coal	972	0.5100%	1.3100%	2.7800%	5.9000%	10.2800%	75.7900%

The biological disadvantages miss

Composite Allocation Score

Percentage

Percentage

Percentage of population incompatible

Why the Urgency?

- Type O medical urgency points = 1.2325 vs type B 0.6200
- Type O wait time increased
- Post-policy 21% increase in O donor allocation to non-O recipients

Persistent discrepancies

 What is the maximum transplant rate for blood group O candidates?

Height disparities for the short

Who is in our donor pool?

Single Donor Pool

Height PRA Blood type

Donor Pool

Single Donor Pool

Single Donor Pool

Single Donor Pool

Future directions

Better define the donor pool to determine the appropriate distribution of biological disadvantages points

Conclusion

- Continuous distribution has improved waitlist mortality and transplant rates for lung transplant candidates in the US
- Disparities for the biologically disadvantaged persist and more knowledge is needed to optimize the allocation system to eliminate disparities
- Additional downstream effects, like increases in out-ofsequence allocation, require in-depth exploration to understand the complex drivers behind OPO and transplant program behaviors while still meeting the needs of both recipients and donor families

Acknowledgements

- Maryam Valapour, MD
- Erika Lease, MD
- Marie Budev, MD
- Samantha Weiss, MS
- Chelsea Hawkins, PhD
- OPTN Lung Committee
- SRTR and UNOS support staff to the OPTN Lung Committee
- Danny Hershberger, MD

