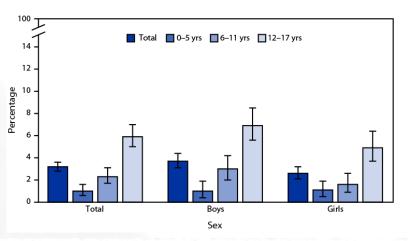
# Biomarkers for Traumatic Brain Injury in Pediatrics

## Nebraska State Trauma Symposium

Grace Y. Lai, MD PhD Assistant Professor Department of Neurological Surgery






## No disclosures



## National Center for Health Statistics

In 2022, **2.3 million** (3.2%) children and adolescents aged  $\leq$ 17 years had ever received a diagnosis of a concussion or brain injury.



In 2013, of children <15 years

- 1,500 deaths
- 18,000 hospitalizations
- 640,000 ED visits
- 75% minor, mild, concussion

Surveillance Summaries / March 17, 2017 / 66(9);1–16

National Center for Health Statistics, National Health Interview Survey, 2022.

## **CDC** Guidelines



#### Key Recommendations from the CDC Pediatric mTBI Guideline:

- 1. Do not routinely image patients to diagnose mTBI.
- 2. Use validated, age-appropriate symptom scales to diagnose mTBI.
- 3. Assess evidence-based risk factors for prolonged recovery.
- 4. Provide patients with instructions on return to activity customized to their symptoms.
- 5. Counsel patients to return gradually to non-sports activities after no more than 1 to 2 days of rest.

## **PECARN: Imaging**

Identification of children at very low risk of clinicallyimportant brain injuries after head trauma: a prospective cohort study

Lancet 2009; 374: 1160-70

Nathan Kuppermann, James F Holmes, Peter S Dayan, John D Hoyle, Jr, Shireen M Atabaki, Richard Holubkov, Frances M Nadel, David Monroe, Rachel M Stanley, Dominic A Borgialli, Mohamed K Badawy, Jeff E Schunk, Kimberly S Quayle, Prashant Mahajan, Richard Lichenstein, Kathleen A Lillis, Michael G Tunik, Elizabeth S Jacobs, James M Callahan, Marc H Gorelick, Todd F Glass, Lois K Lee, Michael C Bachman, Arthur Cooper, Elizabeth C Powell, Michael J Gerardi, Kraig A Melville, J Paul Muizelaar, David H Wisner, Sally Jo Zuspan, J Michael Dean, Sandra L Wootton-Gorges, for the Pediatric Emergency Care Applied Research Network (PECARN)\*

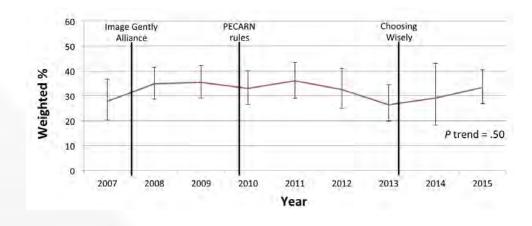
June 2004-March 2006, 25 EDs <18 yo, GCS 14-15 42,412 enrolled **35.3%** with CT scans

- 5.2% positive scans
- 0.9% had clinically significant TBI (death, neurosurgery, intubation >=24h, admission >=2 nights)
- 0.1% underwent neurosurgery



## **PECARN Compliance?**

Use of CT for Head Trauma: 2007–2015


Brett Burstein, MD CM, PhD, MPH, 8-B Julia E.M. Upton, MD, MPH, 5-C Heloisa Fuzaro Terra. DDS. MPH, 5-d Mark I. Neuman. MD. MPH

PEDIATRICS Volume 142, number 4, October 2018:e20180814

#### National Hospital Ambulatory Medical Care Survey (NHAMCS)

Data on ~30,000 annual visits from 300 randomly selected US EDs

- Inclusion: <18yo, chief complaint or discharge diagnosis of head injury</li>
- Outcome: CT use prior to and after publication of PECARN rules (2009)

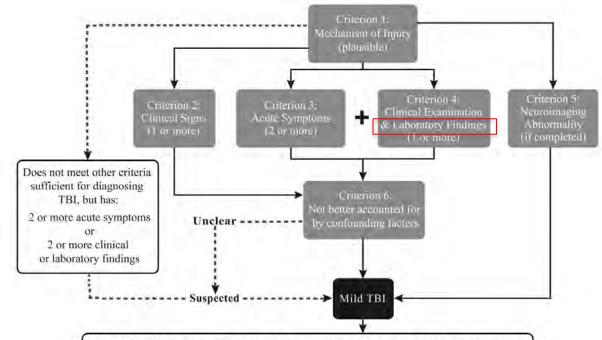


#### Factors associated with ↑CT

- Age >= 2 years
- White race
- Higher acuity
- Non-teaching or non-pediatric hospital



#### Archives of Physical Medicine and Rehabilitation


journal homepage: www.archives-pmr.org



Archives of Physica

#### SPECIAL COMMUNICATION

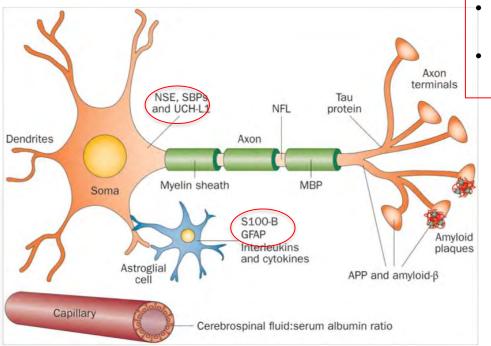
#### The American Congress of R Medicine Diagnostic Criteri Brain Injury



The 'Mild' qualifier is not used if any of the injury severity indicators listed below are present.

- · Loss of consciousness duration greater than 30 minutes.
- · After 30 minutes, a Glasgow Coma Scale (GCS) score of less than 13.
- · Post traumatic amnesia greater than 24 hours.

# Biomarker platform for prediction of positive CT findings in mild TBI


2018



2024



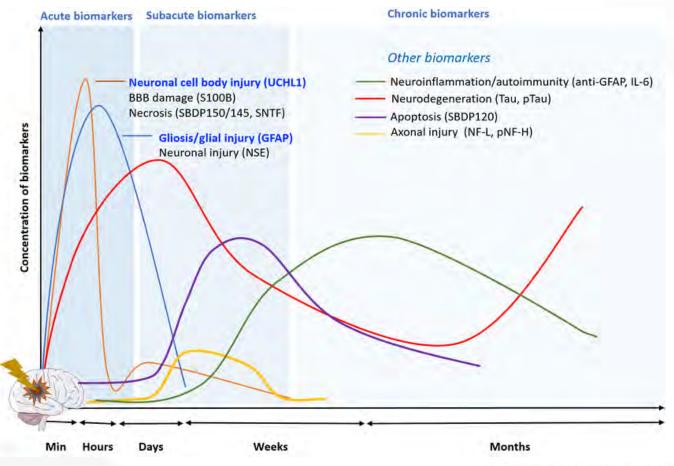
## **Biomarkers of TBI?**



## **Ubiquitin C-terminal hydrolase-L1 (UCH-L1)**

Cytoplasmic deubiquitinating enzyme

- Removes excessive, misfolded, or oxidized proteins via control of proteasome pathway
- Specific to neurons


#### Glial fibrillary acid protein (GFAP)

Main component of astroglial cytoskeleton

- Structure and mechanical strength
- Support of BBB

Upregulated during astrocyte activation Released during astrocytic death

<u>Biomarkers - GLIA Diagnostics</u>



Acute Medicine & Surgery 2021;8:e622

## **Adults**

## Serum GFAP and UCH-L1 for prediction of absence of intracranial injuries on head CT (ALERT-TBI): a multicentre observational study Lancet Neurol 2018; 17: 782-89

Jeffrey J Bazarian\*, Peter Biberthaler\*, Robert D Welch, Lawrence M Lewis, Pal Barzo, Viktoria Bogner-Flatz, P Gunnar Brolinson, Andras Büki, James Y Chen, Robert H Christenson, Dallas Hack, J Stephen Huff, Sandeep Johar, J Dedrick Jordan, Bernd A Leidel, Tobias Lindner, Elizabeth Ludington, David O Okonkwo, Joseph Ornato, W Frank Peacock, Kara Schmidt, Joseph A Tyndall, Arastoo Vossough, Andy S Jagoda

22 sites (15 US, 7 EU), N=1959 (+HCT 125)

- Age >18
- GCS 9-15
- HCT within 12 hours of injury
- Blood within 12 hours of injury

Cut-off values determined from independent group of 334 subjects

|                                             | Sensitivity                   | Specificity                     | PPV                                        | NPV                            | LRP               | LRN               |
|---------------------------------------------|-------------------------------|---------------------------------|--------------------------------------------|--------------------------------|-------------------|-------------------|
| GCS 9-15 (n=1959)                           | 0.976 (0.931-0.995)           | 0.364 (0.342-0.387)             | 0.095 (0.079-0.112)                        | 0.996 (0.987-0.999)            | 1.5 (1.455–1.616) | 0.07 (0.00-0.153) |
| GCS 14-15 (n=1920)                          | 0.973 (0.924-0.994)           | 0.367 (0.345-0.390)             | 0.088 (0.073-0.105)                        | 0.995 (0.987-0.999)            | 1.5 (1.457–1.618) | 0.07 (0.00-0.159) |
| Neurosurgically<br>manageable lesions (n=8) | 1.00 (0.631–1.00)             | 0-344 (0-323-0-365)             | 0.006 (0.003-0.012)                        | 1.00 (0.995–1.00)              | 1.5 (1.447–1.602) | 0.0 (0.00–0.093)  |
| ata in parentheses are 95% C                | s. PPV-positive predictive va | ue. NPV=negative predictive val | <del>ue. LRP=likelihood ratio positi</del> | ve. LRN-likelihood ratio negat | ive.              |                   |

## Age and normal values

www.thelancet.com/child-adolescent Vol 9 January 2025

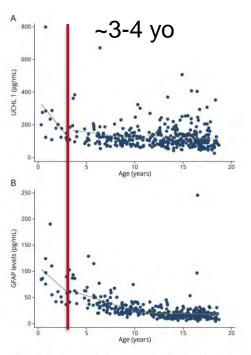
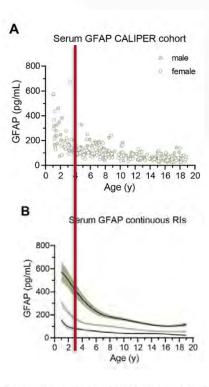





Figure 1: Quantile regression analysis of serum GFAP (A) and UCH-L1 (B) concentrations in the control group by use of the Alinity (Abbott, Chicago, IL, USA) method

Serum GFAP and UCH-L1 concentrations were established in a cohort of 718 children without any neurological pathology aged 0-16 years. The blue lines show the 0-25 and 0-75 quantile concentrations. The red lines show the 0-5 quantile concentrations.



Neurology | Volume 103, Number 3 | August 13, 2024



Stukas et al.: Pediatric normative serum NF-L and GFAP

## Children

ARTICLES · Volume 9, Issue 1, P47-56, January 2025



Serum GFAP and UCH-L1 for the identification of clinically important traumatic brain injury in children in France: a diagnostic accuracy substudy

www.thelancet.com/child-adolescent Vol 9 January 2025

Antoine Puravet, PharmD a,c · Charlotte Oris, PharmD PhD · Bruno Pereira, PhD · Samy Kahouadji, PharmD a,c · Prof Philippe Gonzalo, PharmD PhD d · Prof Damien Masson, PharmD PhD e · et al. Show more

### "Clinically important" TBI

- Positive CT scan with +2 days admission
- Neurosurgery
- PICU admission
- Death

N=531 mTBI 10 ciTBI 14 +HCT Children <= 16yo (11 EDs)

- Within 3 hours of TBI
- GCS 15
- Head CT (intermediate PECARN)

Reference values from 718 control children, >95% percentile for each age group

|                                                                                  | S100B            | GFAP             | UCH-L1           | GFAP or UCH-L1                 | GFAP and UCH-L1  |
|----------------------------------------------------------------------------------|------------------|------------------|------------------|--------------------------------|------------------|
| Sensitivity (95% CI)                                                             | 90% (56-100)     | 100% (69-100)    | 100% (69-100)    | 100% (69-100)                  | 100% (69-100)    |
| Specificity (95% CI)                                                             | 63% (59-67)      | 50% (45-54)      | 51% (47-56)      | 34% (30-38)                    | 67% (63-71)      |
| Positive predictive value (95% CI)                                               | 5% (2-10)        | 4% (2-7)         | 4% (2-7)         | 3% (1-5)                       | 6% (3-10)        |
| Negative predictive value (95% CI)                                               | 100% (98-100)    | 100% (99-100)    | 100% (99-100)    | 100% (98-100)                  | 100% (99-100)    |
| Area under the curve (95% CI)                                                    | 0.77 (0.67-0.87) | 0.75 (0.73-0.77) | 0.76 (0.74-0.78) | 0-67 (0-65-0-69)               | 0-83 (0-81-0-85) |
| Positive likelihood ratio (95% CI)                                               | 2.43 (1.92-3.07) | 1.98 (1.82-2.16) | 2.05 (1.88-2.24) | 1.51 (1.42-1.61)               | 3.01 (2.67-3.40) |
| Negative likelihood ratio (95% CI)                                               | 0-16 (0-02-1-02) | 0                | 0                | 0                              | 0                |
| Biomarker concentrations above the throospitalisation in intensive care or neuro |                  |                  |                  | ore than 2 days with lesions i | in cranial CT or |

## TBI at Children's Nebraska







#### January 2020-December 2023

Trauma Quality Improvement Program (TQIP) database (trauma activations and admissions)

894 Admitted with labs

349 Positive cranial imaging for head/face injury

<18 years old MOI consistent with TBI HCT and blood test <24h

#### May 2025 to present

N = 33

+HCT = 14

Mean age = 7.21 + -6.66 SD (1 day -17.9)

Mean GCS = 14.76 + -0.56 (13-15)

|             | GFAP | UCHL1 | Either |
|-------------|------|-------|--------|
| Sensitivity | 0.93 | 0.57  | 1.00   |
| Specificity | 0.63 | 0.68  | 0.53   |
| NPV         | 0.92 | 0.68  | 1.00   |
| PPV         | 0.65 | 0.57  | 0.61   |

Could have saved 10 patients from HCT (30%)

## **Future Directions**

- Use of biomarkers for clinical decision making in children (at least in 4-17 year olds)
- Utility of test to predict out-comes and diagnose "concussion"
- Utility of test to screen for NAT in babies
- Non-TBI applications

## **Collaborators**

#### **Neurosurgery**

Grace Lai, Arnett Klugh Megan McChesney

#### ED

Zebulon Timmons, James Buscher Nursing Staff

#### **Trauma**

**Patrick Thomas** 

Child Abuse Pediatrics
Suzanne Haney

Lab

Christopher North
Lab Staff



FIND A DOCTOR ▼ PRIMARY & SPECIALTY CARE ▼ HOSPITAL EXPERIENCE ▼ PROFESSIONAL EDUCATION ▼ RESEARCH ▼



#### Believe In Better

Learn about our exceptional magical way kids see the wo

Start Believing

# Child Health Research Institute



