Introduction to the Science of Team Science

Wayne T. McCormack, PhD

Distinguished Teaching Scholar & Professor, UF College of Medicine Director, Clinical & Translational Science PhD Program and TL1 Program President, International Network for the Science of Team Science *mccormac@ufl.edu*

INSCITS Building the knowledge base for effective team science

nternational Network for the Science of Team Science

The UF-FSU hub is supported by the National Center for Advancing Translational Sciences of the National Institutes of Health under University of Florida Clinical and Translational Science Awards UL1TR001427, KL2TR001429 and TL1TR001428.

Outline

- Collaboration challenges
- Team Science definitions
- Evidence for impact of team science
- How you can develop team science skills

Collaboration challenges

- Team Science definitions
- Evidence for impact of team science
- How you can develop team science skills

How many of YOU ...

are part of a research team?
do interdisciplinary research?
do multidisciplinary research?
do transdisciplinary research?
knew there was a difference among those terms?

• have experienced a good collaboration?

• have experienced a bad collaboration?

Team Science = Collaboration?

- Yes, but ...
 - It is more
 - Collaboration is influencing the practice of science
 - Cross-disciplinary collaboration is influencing production of knowledge

Published in Science

Identify two challenges

"The interdisciplinary approach is becoming one of the prominent characteristics of [science] and represents a synthesizing trend which focuses the specialized research techniques on problems common to a number of separate disciplines.

Such cooperative research has to overcome serious obstacles when operating within the existing departmentalized framework of the universities. It appears that real progress in this direction will be made in institutions which are organized on a permanent and frankly cooperative basis.

Psychologically, interdisciplinary research requires not only abstract, theoretical intelligence..., but also 'social intelligence.' Cooperative work is a social art and has to be practiced with patience."

Collaboration Challenges

- Problems of Infrastructure -Tangible and Tacit
 - Inherent challenge associated with structure of the modern university, *i.e.*, the disciplinebound department
 - Tacit norms that hinder interaction
 - Reward structures that focus on individual effort

- Problems of Interaction
 - Difficulty inherent in communicating and collaborating across disciplines
 - Patience and social intelligence are necessary precursors to effective collaboration in such environments

Why was that quote informative?

- Anyone involved in collaboration has probably experienced both challenges
- What is informative is not just <u>what</u> was said, but <u>when</u> it was said
 - One of first articles specifically addressing interdisciplinary research (Brozek & Keys, 1944)
- Science still struggles, can we overcome these challenges?

- Increased emphasis on collaborative research that creates teams of scientists to address complex phenomena
 - Funders (e.g., NIH) are specifically encouraging and supporting collaborative research projects
- Academia, Industry & Policy communities all making more of a concerted effort to study scientific collaboration

Can we overcome the challenges? YES!

 Tremendous growth in the study and understanding of groups and teams

- Scientific study of teamwork can be a true catalyst for change
 - Matured into its own area of inquiry producing a rich base of knowledge
 - Helps us to better understand complex coordination used by teams

TS Building the knowledge base for effective team science

Can we overcome the challenges? YES!

- Collaboration challenges
- Team Science definitions
- Evidence for impact of team science
- How you can develop team science skills

- What is a "team"?
- Groups vs. teams
- Disciplinary, multidisciplinary, interdisciplinary, transdisciplinary, cross-disciplinary

Definitions

Definitions

Teams	two or more people working interdependently (collaborating) towards a shared common goal or task
Team-Building	process of gathering the "right" people & getting them to work together to accomplish a goal/task
Team Leadership	guiding a group of individuals to work as a unit to accomplish a goal/task

Group vs. Team

Group vs. Team

Group vs. Team

	Groups	Teams
Members	Independent	Interdependent
Goals	Individual Shared	
Identity	Individual (me)	Shared (we)
Leadership	Often single	May be shared
Products	Individual	Collective
Reward	Individual	Collective
Cohesion	None/limited	Esprit de corps
Conflict	Reactive	Expected/proactive

Collaboration Across Disciplines: Some More Definitions

• Unidisciplinary

Cross-Disciplinary

- Multidisciplinary
 - additive, complementary, independent, sequential
- Interdisciplinary interactive, combine, integrate

Transdisciplinary

holistic, transcend disciplinary perspectives, new methodologic or conceptual frameworks

Team Science > Collaboration

Low

Level of Interaction and Integration

High

Investigatorinitiated research

 Investigator works on a scientific problem with own research team

Research Collaboration

- Group works on a scientific problem, each bringing some expertise to the problem
- Each member works on a separate part, which are integrated at the end
- The interaction of the lead investigators varies from limited to frequent with regard to data sharing or brainstorming

Integrated Research Team

- Team works on a research problem with each member bringing specific expertise to the table
- There are regular meetings and discussions of the team's overall goals, objectives of the individuals on the team, data sharing, and next steps
- One person takes the lead while other members have key leadership roles in achieving the goal

Adapted from "Team Science: Building Successful Research Collaborations" by L. Michelle Bennett, PhD, Deputy Scientific Director, NHLBI, NIH and Howard Gadlin, PhD, Ombudsman, OD, NIH. PPT presented at University of Iowa, January 2013

- Collaboration challenges
- Team Science definitions
- Evidence for impact of team science
- How you can develop team science skills

Is there evidence for impact of team science?

The Increasing Dominance of Teams in Production of Knowledge

Stefan Wuchty,¹* Benjamin F. Jones,²* Brian Uzzi^{1,2}*†

We have used 19.9 million papers over 5 decades and 2.1 million patents to demonstrate that teams increasingly dominate solo authors in the production of knowledge. Research is increasingly done in teams across nearly all fields. Teams typically produce more frequently cited research than individuals do, and this advantage has been increasing over time. Teams now also produce the exceptionally high-impact research, even where that distinction was once the domain of solo authors. These results are detailed for sciences and engineering, social sciences, arts and humanities, and patents, suggesting that the process of knowledge creation has fundamentally changed.

18 MAY 2007 VOL 316 SCIENCE www.sciencemag.org

How has team size grown?

Fig. 1. The growth of teams. These plots present changes over time in the fraction of papers and patents written in teams (**A**) and in mean team size (**B**). Each line represents the arithmetic average taken over all subfields in each year.

Is the shift to teamwork seen in all fields?

Table 1. Patterns by subfield. For the three broad ISI categories and for patents, we counted the number (*N*) and percentage (%) of subfields that show (i) larger team sizes in the last 5 years compared to the first 5 years and (ii) RTI measures larger than 1 in the last 5 years. We show RTI measures both with and without self-citations removed in calculating the citations received. Dash entries indicate data not applicable.

		Incre team	asing 1 size	RTI (with self	> 1 -citations)	RTI : no self-c)	> 1 itations)
	N _{fields}	N _{fields}	%	N fields	%	N fields	%
Science and engineering	171	170	99.4	167	97.7	159	92.4
Social sciences	54	54	100.0	54	100.0	51	94.4
Arts and humanities	27	24	88.9	23	85.2	18	66.7
Patents	36	36	100.0	32	88.9	-	-

mean # citations team-authored

RTI, relative team impact =

mean # citations solo-authored

How is team size related to impact?

Relative Team Impact (RTI)

RTI = mean # citations team-authored mean # citations solo-authored

Fig. 2. The relative impact of teams. (**A** to **D**) Mean team size comparing all papers and patents with those that received more citations than average in the relevant subfield. (**E** to **H**) The RTI, which is the mean number of citations received by team-authored work divided by the mean number of citations received by solo-authored work. A ratio of 1 indicates that team- and solo-authored work have equivalent impact on average. Each point represents the RTI for a given subfield and year, whereas the black lines present the arithmetic average in a given year.

- Collaboration challenges
- Team Science definitions
- Evidence for impact of team science
- How you can develop team science skills

How can we USE team science?

- Recognize scientific problems that would best be answered using a team science approach
- Interdisciplinary and transdisciplinary research require action
 - connecting or interacting among disciplines
- Not just any activity, but team activity: a process engaged by members of a coordinated scientific team
 - two or more people working interdependently (collaborating) towards a shared common goal or task

How can we USE team science?

Use the Science of Team Science

 Understand and improve how scientists interact and integrate across disciplinary, professional, and institutional boundaries

• What knowledge, skills, and attitudes are important?

Team Science Competencies

Lotrecchiano et al., 2020

COMPETENCY DOMAINS	INDIVIDUALTEAMCOMPETENCIESCOMPETENCIES	
Facilitating Team Affect (Bonding)	Self-Awareness Cognitive Openness Building Trust	
Team Communication	Facilitating Awareness Facilitating Awareness Exchange Communication	Improved Team
Managing Team Research	Interdisciplinary Team Management	Colloboration
Collaborative Problem-Solving	Team Learning & Adaptive Behaviors Cross-Disciplinary Collaboration	Success
Team Leadership	Passion & • Team Roles • Understanding Complexity Perseverance • Shared Visioning • Meeting Management	

Team Science Skill Development

Human Nature	Communication	Team Science	Collaborative	Leadership
	Skills	Tools	Problem-Solving	Skills
 Personality Traits (e.g., Myers-Briggs) Behavior Traits (e.g., DISC) Emotional Intelligence (e.g., EQi) 	 Listening Skills Constructive Feedback Conflict Management 	 Team Design & Diversity Goal Setting Collaboration Plans Authorship Agreements Task & Support Behaviors 	 Collaboration Experience within your team within your discipline with other disciplines 	 Leadership Styles (Kouzes & Posner) Stages of Team Performance (Tuckman) Situational Leadership (Hersey & Blanchard)

Can the Use of Competencies Support Productive Mentoring?

PROBLEM

- PhD scientist training has traditionally been an apprenticeship
- When is a grad student or postdoc ready to finish?
- "I know it when I see it"
- COMPETENCY
 - The ability to do something successfully or efficiently (Oxford Dictionary)

GOAL

- To define required knowledge, skills and attitudes to do something
- A LIST OF COMPETENCIES IS NOT ENOUGH
 - Must be linked to formative assessment

Milestone Approach: Learning Is a Developmental Process

- Milestones: expectations for the knowledge, skills and attitudes at stages of development, demonstrated by observable behaviors
 - Verderame et al., 2018. Competency-based assessment for the training of PhD students and early-career scientists. eLife 7:e34801

Dreyfus &	Novice	Advanced Beginner	Competent	Proficient	Expert
Dreyfus Levels of Skill Acquisition	Rule-based behavior, limited, inflexible	Incorporates aspects of the situation	Acts consciously from long-term goals and plans	Sees situation as a whole and acts from personal conviction	Has intuitive understanding of situations, zooms in on central aspects
Translational Scientist Training Stages	Beginning PhD Student / Clinician beginning research training with little or no experience	Advanced PhD Student / Clinician Scientist during early research training	Defending PhD Student / Beginning Postdoctoral / Clinician Scientist during later research training	Postdoctoral Trainee / Early Career Scientist / Clin Sci near end of research training / Residents/Fellows	Science Professional / Research Team Leaders (may be Aspirational)
			MILESTONES		
Observable Behaviors	discuss, describe, follow	identify, use, explain	design, develop, evaluate	plan, adjust, teach	lead, review, mentor

Proposed Process for Mentor & Self-Assessment

DOMAIN EXPERT

A. Historical context of a specific area

BOUNDARY CROSSER

- A. Knowledge Base for Multiple Disciplines
 B. Broad Scientific Approaches
 C. Translational Phase Versatility
 C. Interprofessional Skills
 E. Problem-Solving
 DOMAIN EXPERT
 A. Historical Context of a Specific Area
- B. Current Content Expertise in a Specific Area $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
- C. Tools and Approaches for a Specific Area $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Trainee Faculty Match

0 1 2 3 4 5

Translational Research & Translational Science

https://ncats.nih.gov/about/about-translational-science/spectrum

Faupel-Badger et al., 2022

CTSA Groups and Meeting > Working Groups > Translational Science Competency-Based Assessment

Need Help

Translational Science Competency-Based Assessment

Overview

This Working Group aims to identify the most relevant competencies for translational science to develop, pilot test, and implement a competencybased assessment tool for the training of translational scientists. Competencybased assessments (CBA) are utilized in health professions education but are not common in biomedical science graduate education nor in postdoctoral training. The creation and use of a CBA tool will provide trainees with a framework for assessing learning outcomes and optimizing mentored research training experiences.

Log In

Develop the competency list.

Group Goals

Calibrate milestones for competency levels.

Pilot-test the final TS-CBA tool.

CTSA Working Group

CTSA Competencies

Ten Translational Science Competency Domains

46 Translational Science Competencies

BOUNDARY CROSSER

A. Use knowledge from multiple disciplinesB. Use broad scientific approachesC. Participate across translational phasesD. Engage stakeholders across professionsE. Engage with communities

DOMAIN EXPERT

A. Use historical context of a specific areaB. Use current content expertise in the specific areaC. Use tools and approaches for the specific area

TEAM PLAYER

A. Demonstrate a cross-disciplinary, collaborative mindsetB. Demonstrate reflective awareness in a team environmentC. Apply strategies to work effectively within diverse teams

SKILLED COMMUNICATOR

- A. Practice effective oral presentation skills
- B. Write and review scientific manuscripts for publication
- C. Write and submit research grant proposals
- D. Communicate effectively with patients & community members
- E. Communicate effectively with funders
- F. Communicate effectively with policy-makers

PROCESS INNOVATOR

- A. Focus on unmet needs
- B. Use creativity & innovation
- C. Seek efficiency & speed
- D. Find generalizable & impactful solutions

46 Translational Science Competencies

SYSTEMS THINKER

A. Operate within a system of therapeutic innovationB. Leverage interconnections of translational researchC. Integrate patient perspectives

RIGOROUS RESEARCHER

A. Recognize important questions

- B. Design and execute experimental/study protocols
- C. Interpret data & troubleshoot technical issues
- D. Design & manage a research program
- E. Apply basic statistical analysis methods
- F. Use appropriate informatics methods
- G. Manage research data

H. Conduct research according to lab safety & regulatory policies

ETHICAL RESEARCHER

- A. Practice responsible conduct of research (RCR)
- B. Apply ethical decision-making in RCR
- C. Display moral courage and research integrity

RESILIENT SCIENTIST

- A. Motivate self and others
- B. Demonstrate perseverance
- C. Adapt to new situations & challenges
- D. Seek professional growth opportunities
- E. Build professional network

RESEARCH LEADER

- A. Develop an inclusive and shared vision
- B. Foster integration and a collaborative environment
- C. Practices effective organization and planning skills
- D. Empower progressive decision making
- E. Facilitate collaborative problem-solving
- F. Promote a culture of trust and psychological safety

Value of Using a Translational Scientist Competency-Based Mentoring Tool

- Applicants and new Trainees & Scholars informed about expectations
- Tool for self-assessment and self-directed learning throughout training and future research careers
- Tool for mentor assessment of training progress toward acquiring the knowledge, skills and attitudes expected of a translational scientist
- Support productive mentoring conversations
- Combined with curricular mapping and program enhancement plans, provide a framework for continuous improvement of learning objectives, training, and assessment

Resources

 Bennett LM, Gadlin H, Marchand C. 2018. Collaboration · Team Science · Field Guide. US Dept of Health & Human Services, NIH, National Cancer Institute.

<u>CITATIONS</u>

- Brozek J, Keys A. 1944. General Aspects of Interdisciplinary Research in Experimental Human Biology. Science 100(2606):507-512
- Faupel-Badger JM, Vogel AL, Austin CP, Rutter JL. 2022. Advancing translational science education. Clin Transl Sci. 15(11):2555-2566
- Gilliland CT *et al.* 2019. The Fundamental Characteristics of a Translational Scientist. Pharmacol Transl Sci. 2(3):213-216
- Lotrecchiano GR, DiazGranados D, Sprecher J, McCormack WT, Ranwala D, Wooten K, Lackland D, Billings H, Brasier AR. 2020. Individual and team competencies in translational teams. J Clinical & Translational Science 5(1):e72
- Verderame MF, Freedman VH, Kozlowski LM, McCormack WT. 2018. Competency-based assessment for the training of PhD students and early-career scientists. **eLife** 7:e34801
- Wuchty S, Jones BF, Uzzi B. 2007. The increasing dominance of teams in production of knowledge. Science 316(5827):1036-1039

	ON-4
FIELD GUII	DE
Christophe Marchand	

Final Thoughts About Team Science

- Teams are made of people
 - Teams are intrinsically dysfunctional
 - Cross-disciplinarity both strengthens and threatens teams
- Team science is an art & a science
 - Can be learned and must be practiced

- Reframe collaboration as a process of teamwork to be mastered
 - By understanding the <u>teamwork activities</u> necessary for success, we can achieve more successful collaborations

Introduction to the Science of Team Science