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ABSTRACT

Artificial intelligence, computational simulations, and extended reality, among other 21st century computational tech-
nologies, are changing the health care system. To collectively highlight the most recent advances and benefits of artificial
intelligence, computational simulations, and extended reality in cardiovascular therapies, we coined the abbreviation
AISER. The review particularly focuses on the following applications of AISER: 1) preprocedural planning and clinical
decision making; 2) virtual clinical trials, and cardiovascular device research, development, and regulatory approval; and
3) education and training of interventional health care professionals and medical technology innovators. We also discuss
the obstacles and constraints associated with the application of AISER technologies, as well as the proposed solutions.
Interventional health care professionals, computer scientists, biomedical engineers, experts in bioinformatics and visu-
alization, the device industry, ethics committees, and regulatory agencies are expected to streamline the use of AISER
technologies in cardiovascular interventions and medicine in general. (J Am Coll Cardiol Intv 2023;16:2479-2497)

© 2023 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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ABBREVIATIONS

AND ACRONYMS

3D = 3-dimensional

Al = artificial intelligence

AISER = artificial intelligence,
computational simulations,

extended reality

AR = augmented reality

CCTA = coronary computed

tomography angiography

CFD = computational fluid

dynamics

CS = computational
simulations

DL = deep learning
ER = extended reality

FDA = Food and Drug
Administration

FFR = fractional flow reserve

IVUS = intravascular
ultrasound

ML = machine learning

OCT = optical coherence
tomography

TAVR = transcatheter aortic

valve replacement

VCT = virtual clinical trial

omputational technologies such as
artificial intelligence (AI), computa-
tional simulations (CS), and
extended reality (ER) are changing the med-
ical practice.”” These computational tech-
nologies can be used to guide procedures
and potentially improve outcomes in the
field of cardiovascular interventions.® Al al-

and

gorithms, such as machine learning (ML)
and deep learning (DL), make data collec-
tion, randomization, and mining easier as
well as personalized risk predictions and
clinical decision making possible.**> CS of
cardiovascular interventions produce
patient-specific data related to the diagnosis
and treatment of cardiovascular diseases.®®
ER technologies improve our understanding
of complex cardiovascular anatomy and
interventional procedures, and they provide
safe and reproducible environments for
interventional health care providers and
medical technology developers to learn and
train.®

In this review, we use the acronym AISER
to refer to all 3 computational domains: Al,
CS, and ER. We investigate AISER’s applica-
tions in cardiovascular interventions, from
preprocedural planning to device research and
development, regulatory approval, in silico or virtual
clinical trials (VCTs), and education and training
(Supplemental Figure 1). Table 1 contains detailed
definitions and terminologies of associated compu-
tational technologies. In contrast to previous work
that looked at each of the AISER components sepa-
rately, this paper focuses on the interdependence and

synergies between the AISER components.*”-°

ROLE OF Al IN CARDIOVASCULAR INTERVENTIONS

ROLE OF Al IN SEGMENTATION AND ANALYSIS OF
CARDIOVASCULAR IMAGES. Al-based
automate analysis and the interpretation of invasive

tools can
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HIGHLIGHTS

¢ In the era of evidence-based medicine,
computational technologies such as arti-
ficial intelligence, computational simu-
lations, and extended reality have the
potential to reshape the health care sys-
tems worldwide.

This review collectively highlights the
latest technological advancements and
synergies of artificial intelligence,
computational simulations, and extended
reality in cardiovascular interventions.

Artificial intelligence, computational
simulations, and extended reality could
improve preprocedural planning, real-
time decision making, device research
and development, device regulatory
approval, and education and training of
interventional health care providers and
medical device innovators.

(ie, optical coherence tomography [OCT] and intra-
vascular ultrasound [IVUS]) and noninvasive imaging
modalities (echocardiography, coronary computed
tomography angiography [CCTA], and magnetic
resonance angiography) to improve cardiovascular
diagnosis and treatment.>'%'" Al-facilitated fusion of
accurately segmented IVUS or OCT images with
invasive angiography or CCTA is the foundation for
anatomically correct 3-dimensional (3D) reconstruc-
tion of coronary vessels, which in turn enhances the
understanding of complex coronary artery anatomies
and facilitates preprocedural planning.'*'* Further-
more, Al-based software facilitates real-time cor-
egistration of fluoroscopy with transesophageal
echocardiography to guide structural heart in-
terventions, including left atrial appendage occlu-
sion, transcatheter mitral valve repair, transcatheter
aortic valve replacement (TAVR), atrial septal defect
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TABLE 1 Terminology and Definitions

Term

Definitions

Big data®

Precision medicine’

Artificial intelligence*

self-correction

Machine learning*
Deep learning®

Simulations’

Extended reality®
Virtual reality®

Augmented reality®
the real-world environment

Mixed reality®

Large amount of raw data collected from heterogeneous sources, such as electronic health records, clinical imaging,
observational registries, demographic biobanks, and atlases

Customized medical care tailored to each patient's unique characteristics

Computer systems that independently perform a task that usually requires human intelligence. Artificial intelligence
includes training (acquisition of information and interpretation of data), reasoning (rules to reach a conclusion), and

A subset of artificial intelligence that trains algorithms to adapt and improve their performance and outcomes with
exposure to more data over time, without active human interference

An advancement of machine learning that requires less structured data to learn simultaneously from large data sets. It is
described as a convolute artificial neural network that processes and transmits information

Simulation is the recreation of a real-world process or system over time. Three types of simulations have been used in
cardiovascular interventions: bench, ex vivo, and computational.

e Bench simulations: testing of a device or technique using bench models

e Ex vivo simulations: experimental procedures on animal or cadaveric hearts and vessels in a perfusion circuit (eg,
Visible Heart [Visible Heart Laboratories] methodologies) combined with imaging®®

e Computational simulations: the process of mathematical modeling performed on a computer, which is designed
to predict the behavior or the outcome of a real system.®”

There is a bidirectional relationship between reality and simulations; the experimental results validate and improve the

simulation models, and the simulations run endless hypothetical scenarios and generate theoretical outcomes in a time-

and cost-efficient manner (Supplemental Figure 2).

Broad term that includes virtual reality, augmented reality, and mixed reality
A simulated experience wherein the user is fully immersed into the interactive virtual world

A simulated experience wherein the user can interact with computer-generated virtual objects preserving at the same time

A state where the augmented and virtual reality coexist and interact in real time

occlusion, and paravalvular leak repair (EchoNavi-
gator, Philips).'*

ROLE OF Al IN DIAGNOSTIC ASSESSMENT OF CORONARY
ARTERY DISEASE AND PREPROCEDURAL PLANNING.
Al could improve the diagnosis of coronary artery
disease and lead to patient-tailored interventions. Al-
guided coronary angiography-based virtual fractional
flow reserve (FFR) systems can 3D reconstruct the
coronary arteries and assess the hemodynamic
significance of stenoses (Supplemental
Figure 3A).">'® Al algorithms enable CCTA-based 3D
reconstruction of coronary arteries with varying
degrees of calcification and calculation of FFR
(HeartFlow FFRcr and Cleerly [Cleerly Labs];
Supplemental 3B).17%  The

mentioned invasive and noninvasive
achieved >90% sensitivity, specificity, positive
predictive value, and accuracy compared to invasive
FFR.'®'® IBM has developed an Al system (Medical
Sieve) capable of automatically identifying coronary
stenoses in coronary angiographies. Initial findings
from the CEREBRIA-1 (Machine Learning vs Expert
Human Opinion to Determine Physiologically
Optimized Coronary Revascularization Strategies)

Figure previously

softwares

study support the robustness of ML in determining
physiologically significant coronary artery stenosis
to guide revascularization.'” ML methods have been

used to predict plaque vulnerability by integrating
morphologic and biomechanical factors derived
from multimodality image-based fluid-structure
interaction models.”® A recently launched software
uses DL to automatically segment OCT images in real
time and quantify calcium burden, thereby assisting
optimal vessel preparation for stent sizing and
positioning (Ultreon 1.0, Abbott) (Supplemental

).21,22

Figure 3C

ROLE OF Al IN CARDIOVASCULAR RISK PREDICTION
AND OUTCOMES. ML algorithms can identify pa-
tients at risk for myocardial infarction who would
benefit from early management.”>** In a large
multicenter observational cohort study, an ML algo-
rithm that combined clinical and computed tomo-
graphic variables (including coronary
scoring) was found to be superior to standard car-
diovascular risk assessment scores, such as athero-
sclerotic cardiovascular disease risk score or calcium

calcium

score, in predicting adverse cardiovascular events
(Supplemental Figure 4).>> Traditional scoring sys-
tems only include a subset of patient variables,
whereas ML methods are exhaustive and can incor-
porate all available clinical and imaging data to
enhance the prognostic accuracy. Al-guided risk
assessment models can predict adverse events
following acute coronary syndromes as well as
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FIGURE 1 Workflow and Applications of the Computational Simulations of Coronary Artery Stenting
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Step 5: Biomechanics and stent

morphometry

Step 4: Stent/balloon positioning and
computational expansion

http://creativecommons.org/licenses/by/4.0/. Modified with permission from Zhao et al.>® CTA = computed tomography angiography; IVUS = intravascular ultrasound;
MV = main vessel; OCT = optical coherence tomography; SB = side branch; TAWSS = time-averaged wall shear stress.

morbidity and mortality post-percutaneous coronary
intervention.?®?’ Supervised ML algorithms also
predicted in-hospital mortality after TAVR (sensi-
tivity, specificity, and positive and negative predic-
tive values up to 96.3%, 83.9%, 96.5%, and 83.8%,
respectively) and transcatheter mitral valve repair
(AUC: 0.83).2%2°

ROLE OF Al IN CORONARY AND STRUCTURAL
INTERVENTIONS. Al-driven robotics have the po-
tential to streamline coronary interventions, reduce
the duration of procedures, and improve patient
outcomes. Small-scale clinical studies have shown
that robot-assisted percutaneous interventions in
coronary arteries, peripheral lower extremity ar-
teries, and carotid arteries are safe, feasible, and
eliminate the radiation exposure and musculoskel-
etal strain of operators.’°>® Robotic technologies
could enhance procedural precision and efficiency
in percutaneous coronary and peripheral in-
terventions.>* A magnetic resonance-compatible ro-
botic surgical assistant system designed for TAVR
deployment has been successfully tested in preclin-
ical swine studies.*>

ROLE OF CS IN
CARDIOVASCULAR INTERVENTIONS

ROLE OF CS IN PREPROCEDURAL PLANNING OF
PERCUTANEOUS CORONARY INTERVENTIONS.
Patient-specific CS of various stent designs and
revascularization strategies could provide detailed
information about stent performance and technique
optimization.® A study showed the ability of invasive
angiography-based FFR and virtual stenting to accu-
rately predict the physiological response to actual
stenting.?® A similar approach has been developed
using noninvasive CCTA.>” The Center for Digital
Cardiovascular Innovations (University of Miami
Miller Medical School) has developed a novel CS
platform that combines: 1) anatomical and plaque
stiffness information derived from invasive imaging
(coronary angiography, IVUS, and OCT) or noninva-
sive (CCTA) imaging; and 2) finite element analysis
and computational fluid dynamics (CFD) to perform
patient-specific simulations of coronary bifurcation
stenting®® (Figures 1 and 2) and assess the impact of
different stenting techniques on local hemodynamics
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FIGURE 2 Preprocedural Computational Planning Using Patient-Specific Coronary Anatomies
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(A) Baseline anatomy; (B) wall shear stress by computational fluid dynamics before computational stenting; (C) plaque stiffness by high-
definition intravascular ultrasound (HD IVUS), showing the fibrocalcific ostial left main (LM) coronary artery stenosis; (D) computational stent
deployment, (E) wall shear stress by computational fluid dynamics after computational stenting, (F to H) 3-dimensional reconstruction of the
clinically deployed stent from HD IVUS and comparison with the computationally deployed stent. Adapted with permission from Chatzizisis
et al.*? LAD = left anterior descending artery; LCX = left circumflex artery; MLA = minimal lumen area.

(Figures 2 and 3).>°"*' This platform generated pre-
liminary clinical data that support the ability of
CS-based preprocedural planning to guide left main
interventions (Figure 2).**

ROLE OF CS IN SURGICAL REVASCULARIZATION OF
CORONARY ARTERY DISEASE. Patient-specific CFD
studies of coronary artery bypass graft surgery have
provided important information on the impact of
type graft
patency.**** Postoperative calculation of wall shear
stress by CFD has predicted the 1-year patency of left

graft and competitive flow on

internal mammary artery grafts.*> Consequently,
preprocedural planning of bypass surgery using
patient-specific CS represents an intriguing
concept.*® The FASTTRACK CABG (Safety and
Feasibility Evaluation of Planning and Execution of
Surgical Revascularization Solely Based on Coronary
CTA and FFRcr in Patients With Complex Coronary
Artery Disease) trial investigates the feasibility and
safety of noninvasive FFRcr guidance for bypass
graft surgery.*’” Similarly, the Center for Digital
Cardiovascular Innovations has developed a plat-
form for patient-specific virtual bypass grafting and
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FIGURE 3 Patient-Specific Computational Stent Simulations
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(Left) Computational stenting of a patient-specific coronary artery bifurcation using 4
different percutaneous coronary intervention techniques. (Right) Wall shear stress (WSS)
derived from computational fluid dynamics in the simulated stented bifurcation at peak
diastole. Note the potential of computational simulations to guide the operators on the
optimal stent sizing, positioning, and technique for any given bifurcation. Abbreviations
as in Figure 1.

computational calculation of the flow in native cor-
onary arteries and virtually implanted grafts.*® This
platform could equip the surgeons with a noninva-
sive tool that would allow them to plan on the
number and type of grafts, aiming to improve graft
patency and clinical outcomes.

ROLE OF CS IN PREPROCEDURAL PLANNING OF
STRUCTURAL INTERVENTIONS. Patient-specific CS
of TAVR could guide operators on the optimal aortic
valve size and position, thereby minimizing the risk
of postprocedural paravalvular aortic regurgitation
and conduction abnormalities.**>* The feasibility,
safety, and efficacy of CS-guided TAVR has been
shown in a proof-of-concept case series and in a

JACC: CARDIOVASCULAR INTERVENTIONS VOL. 16, NO. 20, 2023
OCTOBER 23, 2023:2479-2497

prospective observational multicenter study using a
dedicated computational platform (TAVIguide, FEops
NV) (Figure 4A).°>>* Analogous applications of CS
have been deployed for percutaneous edge-to-edge
mitral valve repair, mitral valve annuloplasty, and
mitral valve replacement procedures.””>* Patient-
specific CS of edge-to-edge mitral valve repair
(MitraClip, Abbott) have used the stress and strain on
mitral valve leaflets and mitral valve regurgitation as
surrogate endpoints to identify the optimal site for
clip placement (Figure 4B).”>>°° CS of left atrial
appendage occlusion procedures have used simulated
device apposition to identify the optimal device size
and positioning in patient-specific anatomical models
(HEARTguide, FEops) (Figure 4C).””

ROLE OF CS IN PERIPHERAL AND CEREBRAL
INTERVENTIONS. Patient-specific CS have been used
in endovascular aortic aneurysm repair procedures to
guide operators on the optimal stent graft size,
design, placement, and ultimately improve proce-
dural outcomes.*®®° CS-guided preprocedural plan-
ning of endovascular aneurysm repair led to a
reduction in radiation exposure and contrast use.®’
Similarly, patient-specific CS have been used in the
cerebral vasculature, studying the effect of vascula-
ture morphology on the outcomes of mechanical
thrombectomy with stent retrievers.®?

ROLE OF CS IN MECHANICAL CIRCULATORY SUPPORT.
CS could determine the hemodynamic effects of
mechanical circulatory support devices including left
ventricular assist devices, intra-aortic balloon
pumps, and extracorporeal membrane oxygenation.
Patient-specific CS of left ventricular assist devices
with realistic pressure-flow rates have elucidated the
effects of the device on the free and septal wall
stress distribution, identifying the crucial mecha-
nistic role of septal shift to the development of right
ventricular dysfunction post-device implantation.”-®3
These studies highlighted the importance of
personalizing the optimal rotational speed of the
assist device to achieve an equilibrium between
effective circulatory support and reduced device-
induced wall stress and septal shifting.””®> Fluid-
structure interaction simulations of an intra-aortic
balloon pump and extracorporeal
oxygenation were used to study the effect of these
devices on end-organ perfusion (ie, heart, brain, and
lower extremities), aortic wall stress, and aortic re-
gion of blood flow intersection.®*

membrane

ROLE OF CS IN CARDIOVASCULAR DEVICE LIFE
CYCLE. The Food and Drug Administration (FDA)
endorses the application of CS throughout the life
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FIGURE 4 Patient-Specific Computational Simulations of Structural Heart Interventions
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(A) Transcatheter aortic valve replacement. Modified with permission from Dowling et al.> (B) Percutaneous edge-to-edge mitral valve repair.
Modified with permission from Kong et al.>® (C) Left atrial appendage occlusion device. Modified with permission from Bavo et al.”” In all
illustrated procedures, note the potential of computational simulations to assist the operators with optimal device sizing and positioning.

2485



2486

Samant et al JACC: CARDIOVASCULAR INTERVENTIONS VOL. 16, NO. 20, 2023

21st Century Computational Tools in Cardiovascular Interventions

OCTOBER 23, 2023:2479-2497

VIRTUAL
PROTOTYPING

DESIGN
IDEATION

OPTIMIZATION

FIGURE 5 Computational Simulations and Medical Device Development

A Role of Computational Simulations in the Total Device Life Cycle
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(A) Computational simulations play an integral role throughout the entire device life cycle from research and development to regulatory
approval and postmarket monitoring. (B) Performance parameters of different testing methods (ie, bench and animal testing, computational
simulations, and clinical trials) of cardiovascular devices. Note the higher performance of computational models over preclinical and clinical
studies for medical device testing, primarily in terms of patient specificity, cost, time, and ability to cover the whole spectrum of disease
complexity. Modified with permission from Morrison et al.®® IFU = instructions for use.

cycle of a medical device, extending from device
prototyping to regulatory approval and postmarket
monitoring (Figure 5A).°>°° Figure 5B summarizes the
performance parameters of different methods for
device testing and the improved performance of CS

over the presently employed preclinical studies
(bench and animal), specifically in terms of patient
specificity, time, cost, and ability to cover the entire
spectrum of disease complexity. Using patient-
specific CS of left main coronary artery bifurcation
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FIGURE 6 Spectrum of Extended Reality and its Applications in Cardiovascular Interventions

A e Reality il Augmented Reality Mixed Reality

Interventional
Education and Trainin

Intra-procedural
Visualization

(A) Extended reality is a is a simulated experience wherein the user is fully immersed (virtual reality) or semi-immersed (augmented reality)
into the interactive virtual world. Mixed reality is a subtype of extended reality in which the virtual and augmented reality coexist and interact
in real time. (B) Fly through in a computational simulation of patient-specific coronary bifurcation with the T and small protrusion technique.
(C) Immersive visualization of patient-specific computational fluid dynamics following coronary stenting. Modified with permission from
Quam et al.°® (D) Real-time intraprocedural visualization of a bicaval bidirectional Glenn shunt. Modified with permission from Bruckheimer
et al.”’ (E) Real-time interaction of the operator with the angiography machine in a virtual cardiac catheterization laboratory using Inter-
professional Experiential Center for Enduring Learning's immersive 5-sided laser-Cave automatic virtual environment (University of Nebraska
Medical Center’®). Abbreviations as in Figure 1.

stenting, we tested the mechanical performance of lumen scaffolding, and tissue protrusion.*' The
different prototypes of a novel everolimus-eluting Living Heart Project (SIMULIA, Dassault Systémes)
stent (Synergy Megatron, Boston Scientific Inc) and offers a unique virtual human heart model to perform
extracted important information on the role of stent mechanical, electrical, and hemodynamic simulations
design on stent radial strength, stent expansion, and test different cardiovascular devices.®”
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TABLE 2 Role of ER Technologies in Cardiovascular Interventions

ER Technologies

Imaging
imaging
Procedure Rehearsal Simbionix, 3D CT angiography
Studio'®° Systems

(Ref. #) Company Imaging Input Applications
Ask Angie®® Boston Scientific Live video streaming using Help Interactive intraoperative virtual support from clinical
Lightning's AR platform experts on device setup and troubleshooting
during procedures in the cardiac catheterization
laboratory
True 3D%° EchoPixel CT, MRI, ultrasound, and fluoroscopy Preprocedural planning with AR-aided display of
imaging patient-specific endovascular structures
Holoscope”' RealView Medical 3D rotational angiography and 3D Intraoperative guidance with a computer-generated

transesophageal echocardiography

holographic display during transcatheter atrial
septal defect closure

Patient-specific computational models of
endovascular anatomy for preprocedural planning

3D = 3-dimensional; AR = augmented reality; CT = computed tomography; ER = extended reality; MRl = magnetic resonance imaging.

ROLE OF ER IN CARDIOVASCULAR INTERVENTIONS

ROLE OF ER IN CORONARY INTERVENTIONS. ER
(Table 1) can offer advanced visualization of complex
coronary anatomies and assist the planning of com-
plex coronary interventions (Figures 6A and 6B). The
Marquette Visualization Lab offers a representative
example of a versatile and immersive environment
for stereoscopic 3D visualization of patient-specific
CFD simulations (Figure 6C).°®

ROLE OF ER IN STRUCTURAL HEART INTERVENTIONS.
ER technologies offer advanced visualization of
anatomically complex structural heart defects. The
applications of ER technologies in structural heart
interventions are summarized in Table 2. Preproce-
dural planning of transcatheter closure of anatomi-
cally complex venous sinus defects using virtual
reality technologies resulted in decreased proce-
dural times and radiation exposure.®® Augmented
reality (AR, a type of ER) with an overlay of
magnetic resonance imaging on real-time fluoro-
scopic images enhanced the catheter navigation
across the ventricular septal defect, avoiding
chordal and trabecular entrapment during percuta-
neous closure (Figure 6D).”%7"

ROLE OF ER IN PERIPHERAL INTERVENTIONS. ER
technologies provide advanced visualization and
intraprocedural guidance during endovascular aortic
repair procedures.”””? Intraoperative visualization
using an AR platform (HoloLens, Microsoft) allowed
the operators to overlay virtual angioscopy and
computed tomography angiograms on the surgical
field and navigate throughout the aorta in real time.”*
Likewise, other AR platforms, including the Fast
Method for Virtual Stent-graft Deployment or com-
puter assisted fenestrated endovascular aortic repair
and Fiber Optic RealShape (Philips Healthcare),

provide real-time intraoperative navigation during
endovascular procedures, significantly reducing the
fluoroscopy time.”*74

ROLE OF ERIN VASCULAR ACCESS. ER technologies
can visualize the vascular access sites with precision,
thereby minimizing adjacent tissue injury and
reducing radiation exposure. AR-assisted retrograde
access to the peroneal artery was successfully per-
formed in a patient with critical limb ischemia.”” 3D
visualization of vascular access with a handheld or
head-mounted device enabled better bedside visual-
of vessel architecture

ization in hemodialy-

sis patients.”®

ROLE OF ER IN EDUCATION AND TRAINING IN
CARDIOVASCULAR INTERVENTIONS. Enhanced visual-
ization of patient-specific CS with ER technologies
can assist the operators, staff, trainees, and medical
technology innovators to comprehend the complexity
of various coronary, structural, and peripheral pro-
cedures (Figure 6). Table 3 summarizes many of the
available ER tools for education and training of
interventional health care providers and patients.
Cardiology fellows, who received simulator-based
training on transvenous pacing and intra-aortic
balloon pump placement, achieved higher skill
assessment scores compared to those who did not
receive simulator-based training.”” The Interprofes-
sional Experiential Center for Enduring Learning
(University of Nebraska Medical Center) is a multi-
disciplinary venue with advanced visualization ca-
pabilities (eg, 3D CADWalls, 2D interactive digital
iWalls, holographic theater, head-mounted displays,
and an immersive 5-sided laser-Cave automatic vir-
tual environment) where interventional cardiology
trainees and staff can receive experiential learning on
cardiac  catheterization laboratory operations
(Figure 6E, Video 1) and procedures (eg, bifurcation
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TABLE 3 Role of ER Technologies in Education and Training

ER Technologies (Ref. #) Institute

Target Group

Applications

HoloLens'' Microsoft

The Virtual Heart® Stanford University

Vascular Intervention Mentice
System Training

simulator'®? staff)

Interprofessional
Experiential Center for
Enduring Learning”®

University of Nebraska
Medical Center
staff)

Visible Heart Laboratories
(University of
Minnesota)

Atlas of Human Cardiac
Anatomy’®
staff)

Interventional trainees

Patients and medical students .

Interventional health care
providers (faculty, fellows, and

Interventional health care
providers (faculty, fellows, and

Interventional health care
providers (faculty, fellows, and

AR-guided visualization of structural heart
anatomies

Virtual immersion in cardiac anatomy to
learn and understand anatomical structures,
interventions, and congenital defects

e Project Brave Heart: preprocedural VR
experience to reduce anxiety and stress in
pediatric patients

Virtual training sessions in endovascular
procedures in a safe and realistic simulation
environment

ER visualization hub, which provides an immersive
and semi-immersive interactive environment
to educate and train providers on
cardiovascular interventional procedures

Educational atlas of patient-specific
3-dimensional anatomies of various structural
heart diseases and device implantation
procedures

ER = extended reality; VR = virtual reality.

stenting) (Video 2).”® ER educational tools have also
been developed by the Visible Heart Laboratories
(University of Minnesota) and are available on the
free access website of the Atlas of Human Car-
diac Anatomy.”°

SYNERGIES AMONG Al, CS, AND ER

The feedback loops between each of the AISER com-
ponents in cardiovascular interventions are summa-
rized in Figure 7. CS generates big data, which are
analyzed by Al algorithms, whereas Al produces new
decision-making algorithms or hypotheses that are
further tested in CS. The VCT (described in the
following section) is a typical example of synergy
between CS and Al

CS provide patient-specific data for ER technolo-
gies to visualize cardiovascular interventions in
immersive/semi-immersive interactive environments
(Figure 7). In turn, operators of ER technologies can
provide feedback to CS that helps to improve the ac-
curacy of simulations and allows testing of alternate
scenarios. The HARVEY platform (Duke University) is
a representative example of the cross talk between CS
and ER. This platform performs patient-specific CFD
in different vascular beds and projects them in
immersive/semi-immersive virtual displays.®® Oper-
ators have the ability to model the placement of
vascular devices (eg, stents and conduits) and assess
their hemodynamic impact.

Al provides decision-making algorithms that can
be evaluated in an immersive environment using ER,

whereas operators within the ER environment pro-
vide continuous feedback to Al decision-making al-
gorithms (Figure 7). The FDA has approved the first-
ever intraoperative holographic guidance system
(CommandEP System, SentiAR) for cardiac abla-
tions.®! This system uses real-time data from elec-
troanatomic mapping systems and generates an
ML-enhanced interactive 3D environment that helps
the operator identify arrhythmogenic substrates.
Other Al-based electroanatomic mapping technolo-
gies have also been introduced.®*3

VCTs IN CARDIOVASCULAR INTERVENTIONS

The concept of VCTs was first introduced by the Vir-
tual Physiological Human Institute and transcends
traditional computational modeling.®* VCTs apply CS
in large patient-specific data sets to test the efficacy
and safety of new drugs, medical devices, or inter-
ventional procedures. In recent years, the FDA has
become a proponent of VCT approaches to cardio-
vascular interventions.®>:®> The VCT pathway has 5
integral components (Figure 8): 1) collection of a
large, randomized data set of patient-specific anato-
mies representative of different sexes, ethnicities,
race, and disease complexities; 2) application of
realistic and extensively trained and tested CS
methods; 3) use of simulation-derived surrogate
endpoints that accurately predict clinical endpoints;
4) use of Al algorithms to collect and mine simulation
data; and 5) use of knowledge acquired by the VCT to
guide targeted actual clinical trial. The ENRICHMENT
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FIGURE 7 Synergies Among Artificial Intelligence, Computational Simulations, and
Extended Reality
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reality.

(ENRICHMENT in Silico Clinical Trial Project) trial,
led by the FDA and Dassault Systémes, constitutes a
representative example of a VCT in structural heart
interventions.” This trial uses patient-specific CS to
test different mitral clip prototypes for edge-to-edge
mitral valve repair and guide actual clinical trials. In
the field of coronary interventions, one could
consider a VCT to test the performance of existing
or new stent platforms or stent techniques using
surrogate endpoints (eg, stent expansion, apposi-
tion, and local flow parameters), which are highly
predictive of adverse clinical outcomes (eg, revas-
cularization, myocardial infarction, and death). The
Center for Digital Cardiovascular Innovations per-
forms a VCT to evaluate the effectiveness of various
stenting techniques in coronary bifurcations
(Figure 3). This study aims to generate a “bifurca-
tion atlas” of bifurcation anatomies and stent sim-
ulations and develop a comprehensive decision-
making algorithm for bifurcation interventions.
Collectively, the VCT pathway can help the device
industry, regulatory bodies, and academia to ac-
quire new knowledge on the performance of
different cardiovascular techniques and devices in
diverse patient populations in a time- and cost-
effective manner.

LIMITATIONS OF Al, CS, AND ER

AISER-related biases, limitations, and considerations,
as well as proposed solutions, are summarized in
Table 4.

DATA BIASES. Although AISER implementation has
the potential to make the health care system more
efficient and accessible, it is vulnerable to social,
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economic, and systemic biases.®® First, sex, racial,
biases (eg, under-
representation of women and minorities) in Al
and CS training data sets will lead to inaccurate
generalizations.®® Second, the lack of standardiza-
tion of data type or the performance metrics,
overlapping disease phenotypes, and heterogeneity
in the quality of diagnostic studies could make the
training of optimal AISER models challenging.®’

ethnic, and economic

Third, small training data sets can result in over-
fitting of the ML model and lack of generalization,
whereas large training data sets with confounding
input variables can result in incorrect interpretation
and correlation by the AI model. Fourth, data
processing for AISER requires regular annotation by
trained operators to ensure quality control, poten-
tially leading to annotator biases (eg, contradicting
opinions among experts on image segmentation).
Finally, there is a paucity of certain categories of
data in the scientific literature, and subpar quality
of data from electronic medical records may have
an effect on the training and accuracy of AI and
patient-specific CS.®® For that reason, AI is
currently considered by the FDA as a diagnostic aid
in decision making rather than a completely inde-
pendent tool.®°

In an effort to minimize the previously mentioned
biases and inequalities and promote safe, effective,
and good AI practices for medical device develop-
ment, the FDA, Health Canada, and United Kingdom
Healthcare Products Regulatory Agency have jointly
identified 10 guiding principles, which are summa-
rized in Table 4.5°> These practices also apply to CS
and ER.

LEGAL OBSTACLES. Widespread implementation of
AISER requires the exchange of patient data and
computational models across multiple institutions
and nations, which might challenge patient confi-
dentiality and privacy regulations. The lack of au-
thorities that oversee and govern the AISER
standardization is also another regulatory obstacle.
AISER-related errors could raise complex ethical and
legal queries regarding accountability. For example,
legal liability for an unintended fatal complication
during a CS-guided cardiovascular intervention could
be disseminated between the operator or the soft-
ware/platform developer. Lastly, the extent to which
AISER-assisted interventions devalue the operator’s
labor represents another challenge that warrants
careful consideration.

FINANCIAL BARRIERS. CS requires high-performance
computing systems, which could generate an added
financial burden for the institutions adopting these
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TABLE 4 Limitations of AISER Technologies and Proposed Solutions
Limitations Solutions®®
Data biases e Limited diversity of the intended population Clinical study participants and data sets are

e Limited data standardization

e Limited consensus on image segmentation
and annotation

e Lack of big data for training and testing of Al
algorithms

Legal obstacles e Risk to patient confidentiality and privacy

e Lack of regulatory authorities to monitor
AISER implementation

e Questionable accountability in case of patient
complications related to AISER-guided

representative of the intended patient population
Training data sets are independent of testing data sets
Selected reference data sets are based on the best
available method

Model design is tailored to the available data and
reflects the intended use of the device

Testing demonstrates device performance during
clinically relevant conditions

Deployed models are monitored for performance, and
retraining risks are managed

Multidisciplinary expertise is leveraged throughout the
total product life cycle

Good software engineering and implementation of
security practices

Involvement of regulatory agencies to create a
dedicated section to monitor implementation of AISER
Operators are provided clear and essential information

interventions
e Devalue of operator's labor

Financial barriers e High cost of AISER technologies
technologies

across the health care system

simulations
o Time-consuming process
e Limited real-time applicability

cardiovascular anatomies

e Lack of wide insurance coverage for AISER e Wider insurance coverage and accessibility to AISER

e Limited accessibility to AISER technologies

Technical considerations e Limited tactile feedback of computational e Faster computing (supercomputer clusters, quantum

e Limited incorporation of patient-specific

e Focus is placed on the performance of the human-Al
team

e Access to affordable computing power

technologies

computing)®?

e Big data-trained faster Al algorithms

e Statistical emulation®’

e Improved patient specificity (big data, virtual clinical
trials)

e Large-scale randomized studies to validate the accuracy
of AISER technologies

Al = artificial intelligence; AISER = artificial intelligence, computational simulations, and extended reality.

technologies.®® In addition, the cost-effectiveness
and adoption of AISER technologies intended to
optimize a cardiovascular intervention could be
diminished in the absence of wide insurance coverage
and accessibility across the health care systems. On
the contrary, AISER has the potential to minimize
unnecessary diagnostic testing and clinical decision-
making variability among operators, thus stream-
lining care and decreasing health care costs. For
example, Al-facilitated focused cardiac ultrasound
(Bay Labs) enables rapid image acquisition, interpre-
tation, and subsequent triaging of patients at the
point of care, even by untrained health
care providers.”°

TECHNICAL CONSIDERATIONS. CS does not provide
tactile feedback to the operators. Also, patient-
specific CS are time-consuming; therefore, their
real-time application at the cardiac catheterization
laboratory could be challenging. However, the use
of supercomputer clusters, quantum computing,
and advanced Al and statistical emulation techniques
can significantly expedite the simulation process
and achieve real-time guidance.’™®> Current ER

technologies appear to lack precise representation of
patient-specific cardiovascular anatomies, potentially
attenuating their educational value.®*

FUTURE APPLICATIONS OF AISER IN
CARDIOVASCULAR INTERVENTIONS

INDIVIDUALIZED PREPROCEDURAL PLANNING AND
REAL-TIME DECISION MAKING. AISER-facilitated
preprocedural planning and real-time decision mak-
ing could transform the daily operations in the car-
diac catheterization laboratory of the future (Central
Illustration). Real-time CS and Al-based predictive
analytics could lead to fast and standardized diag-
nosis of coronary, structural, and peripheral disease
and enable operators to devise procedural strategies
tailored to individual patients.’#°°> The net gain of
this process would include reduced procedure-
associated costs, procedural times, complication
rates, improved catheterization laboratory efficiency,
reduced radiation exposure for patients and opera-
tors, reduced health care costs, shorter hospitaliza-
tion, improved patient satisfaction, and improved
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A proposed concept on how virtual clinical trials can guide targeted actual clinical trials
toward faster and cost-effective testing and regulatory approval of cardiovascular de-
vices and techniques. Note that virtual clinical trials have the potential to be more in-
clusive of the intended population compared to actual trials.

short- and long-term clinical outcomes. Randomized
clinical studies in the years to come are warranted to
test the role of AISER technologies in cardiovascu-
lar interventions.

DEVICE RESEARCH AND DEVELOPMENT AND REGULATORY
APPROVAL. AISER is expected to play a pivotal role in
the cardiovascular device industry (Figure 8). In the
near future, the device industry and regulatory
bodies will engage in statistically powered and
representative VCT before assessing the performance
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of the devices in actual clinical trials. The VCT
pathway might change the landscape of clinical
research by guiding targeted, faster, and less expen-
sive randomized clinical trials.

EDUCATION AND TRAINING OF INTERVENTIONAL
HEALTH CARE PROVIDERS AND MEDICAL DEVICE
INNOVATORS. Finally, AISER is expected to play a
pivotal role in the education and training of inter-
ventional health care providers (faculty, fellows, and
staff) and medical device innovators of the future.
Using ER technologies, health care providers might
have the unique ability to engage all their senses in a
radiation- and contrast-free environment and
improve the performance of existing or new treat-
ment techniques and strategies (eg, bifurcation
stenting techniques and structural heart in-
terventions). This advanced training experience
might allow the interventional health care providers
to learn “greater, faster, better”; accelerate their
learning curves; and minimize the associated proce-
dural risk.

CONCLUSIONS

AISER has the potential to transform the following 3
areas of cardiovascular interventions in the coming
years: 1) preprocedural planning and real-time deci-
sion making; 2) device innovation, research and
development, and regulatory approval; and 3) edu-
cation and training of interventional health care
professionals and technology developers. AISER tools
are expected to advance in terms of accuracy and
standardization, speed, cost, and accessibility as
technology advances. The use of AISER technologies
in cardiovascular interventions and medicine in
general is anticipated to be streamlined by multidis-
ciplinary synergies between interventional health
care providers, computer scientists, biomedical en-
gineers, bioinformatics and visualization experts,
device industry, ethical boards, and regulatory
agencies.
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computer simulations, and extended reality.

A conceptual example of how artificial intelligence, computational simulations, and extended reality can transform the coronary, structural,
and peripheral interventions in the cardiac catheterization laboratory of the future. Al = artificial intelligence; AISER = artificial intelligence,
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