
Computers in Biology and Medicine 37 (2007) 1292–1302
www.intl.elsevierhealth.com/journals/cobm

A novel active contour model for fully automated segmentation of
intravascular ultrasound images: In vivo validation in

human coronary arteries�

George D. Giannogloua,∗, Yiannis S. Chatzizisisa, Vassilis Koutkiasb, Ioannis Kompatsiarisc,
Maria Papadogiorgakic, Vasileios Mezarisc, Eirini Parissic, Panagiotis Diamantopoulosd,
Michael G. Strintzisc, Nicos Maglaverasb, George E. Parcharidisa, George E. Louridasa

aCardiovascular Engineering and Atherosclerosis Laboratory, 1st Cardiology Department, AHEPA University Hospital, Aristotle University Medical School,
Thessaloniki, Greece

bLaboratory of Medical Informatics, Aristotle University Medical School, Thessaloniki, Greece
cInformatics and Telematics Institute, Center for Research and Technology-Hellas, Thessaloniki, Greece

dDepartment of Engineering and Design, University of Sussex, Sussex, UK

Received 13 October 2005; received in revised form 28 November 2006; accepted 4 December 2006

Abstract

The detection of lumen and media-adventitia borders in intravascular ultrasound (IVUS) images constitutes a necessary step for the quantitative
assessment of atherosclerotic lesions. To date, most of the segmentation methods reported are either manual, or semi-automated, requiring
user interaction at some extent, which increases the analysis time and detection errors. In this work, a fully automated approach for lumen
and media-adventitia border detection is presented based on an active contour model, the initialization of which is performed via an analysis
mechanism that takes advantage of the inherent morphologic characteristics of IVUS images. The in vivo validation of the proposed model in
human coronary arteries revealed that it is a feasible approach, enabling accurate and rapid segmentation of multiple IVUS images.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Coronary angiography is the gold-standard method for imag-
ing and diagnosis of coronary heart disease. However, it is re-
stricted by its inability to quantify plaque burden beyond the
luminal silhouette created by the angiographic contrast. In the
recent years, intravascular ultrasound (IVUS) has been proven
superior in the imaging of coronary atherosclerosis [1]. IVUS
is a catheter-based technique that provides two-dimensional
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(2D) cross-sectional images of coronary artery and, therefore,
accurate information about the arterial morphometry (i.e. lu-
men, vessel and plaque area) and morphology. However, 2D
IVUS images are limited in providing reliable information
about the extent of atherosclerosis due to their tomographic
nature. Aiming to overcome this limitation, several three-
dimensional (3D) reconstructions approaches have been devel-
oped based on either linear stacking of adjacent IVUS images,
resulting in straight 3D reconstruction, or spatially correct lo-
calization of adjacent IVUS images along the vessel course,
resulting in anatomically realistic 3D reconstructions [2–6].

The first and most critical step for the 3D reconstruction of
coronary arteries, regardless of the reconstruction approach, is
the segmentation of the IVUS images, i.e. the detection of the
lumen-wall and media-adventitia borders (contours) (Fig. 1).
Segmentation can be done either manually, which is a quite
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Fig. 1. A typical IVUS image with the lumen and media-adventitia borders
demarcated (LCSA, lumen cross-sectional area; VCSA, vessel cross-sectional
area; WCSA, wall cross-sectional area; MLD, maximum lumen diameter;
MVD, maximum vessel diameter).

laborious and time-consuming process, subject to high inter-
and intra-user variability, or via computer-aided techniques.
Several IVUS segmentation approaches have been proposed
so far, including texture analysis [7], active contours [8],
knowledge-based graph searching [9], minimum cost algo-
rithms [10], and region growing [11]. Among them, the active
contour model and its variations showed remarkable feasibility
and accuracy [12–14]. However, some of these algorithms re-
quire manual contour initialization, thereby increasing the user
interaction, and concomitantly the uncertainty of the segmen-
tation. In addition, although these algorithms were extensively
validated in vitro, their in vivo applicability and reliability still
remain unclear.

In this study, we present a fully automated approach for seg-
mentation of IVUS images based on a variation of an active con-
tour model, and, also, validate this approach in vivo in human
coronary arteries. Considering an IVUS image sequence, the
initialization of the lumen-wall and media-adventia contours in
each image is performed automatically using an initialization
algorithm, and the initial contours extracted constitute the input
to the active contour model, which then deforms the contours
appropriately, identifying their correct location on the IVUS
frame. The in vivo evaluation of the proposed approach showed
that our technique is capable of reliably and rapidly segmenting
IVUS images, without requiring any additional user interaction.

2. Methods

2.1. Theoretical background

Active contour models, also known as snakes, were orig-
inally presented as a regularization step in edge detection

algorithms [15–17]. A snake is an ordered set of points (called
snaxels), constituting an energy-minimizing parametric closed
curve guided by external forces, which has to be initially de-
fined on the image plane. Specifically, the aim is to minimize
an energy functional Esnake, defined as

Esnake = Eint + Eext, (1)

where Eint and Eext are the internal energy formed by the snake
configuration and the external energy formed by external forces
affecting the snake, respectively. In this context, the initially
defined contour deforms appropriately, in order to minimize the
abovementioned energy functional.

Although several active contour models have been pre-
sented in the literature, exhibiting remarkable results in var-
ious application domains, one of their major drawbacks is
the requirement for manual initialization of the active con-
tours. In this study, we developed an automated mechanism
for active contour initialization based on the analysis of
inherent characteristics of IVUS images. This mechanism
was incorporated in a variant active contour model that was
constructed for efficient IVUS images segmentation. The
entire segmentation model developed is presented in detail
in the following.

2.2. IVUS images acquisition and pre-processing

The IVUS images acquisition process is summarized in
Fig. 2 [18]. The IVUS procedures were performed with a
mechanical imaging system (ClearView, Boston Scientific,
Natick, MA, USA) and a 2.6F sheath-based catheter, incorpo-
rating a 40 MHz single-element transducer rotating at 1800 rpm
and yielding 30 images/s (Atlantis SR Pro, Boston Scientific,
Natick, MA, USA). A motorized pullback device was used to
withdraw the catheter at a constant speed of 0.5 mm/s. The ul-
trasound data, along with the simultaneous ECG, was recorded
in a 0.5 in S-VHS videotape. The S-VHS data was digitized
at 512 × 512 pixels with 8-bit grey scale at a rate of 7.5 im-
ages/s, and the end-diastolic images were selected (peak of
R-wave on ECG).

Then, the IVUS images were segmented according to the
framework schematically presented in Fig. 3. The first step of
the procedure involved the image pre-processing, in order to
prepare appropriate versions of the images and increase the de-
tection efficiency. From each IVUS image, a 340 × 340 pixels
sub-image was extracted, including the region of interest and
the transducer of the catheter at the center of the image. To fa-
cilitate efficient pre-processing in the radial and tangential di-
rection, the sub-image was transformed to a polar coordinate
image, where columns and rows corresponded to angle and dis-
tance from the center of the catheter, respectively. The polar
coordinate image, denoted as I (r, �), was used for the remain-
der of the pre-processing and contour initialization. In addition,
the catheter induced artifacts were removed. As already men-
tioned, IVUS images include not only tissue and blood regions,
but also the transducer of the catheter; the latter defines a dead
zone of radius equal to that of the transducer, where no useful
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Fig. 2. Schematic presentation of IVUS images acquisition process.

Fig. 3. The proposed approach for the automated segmentation of IVUS images.

information is contained (Fig. 1). Knowing the diameter D of
the transducer, these catheter-induced artifacts were easily re-
moved by setting I (r, �) = 0 for r < D/2 + e, with e being a
small constant.

2.3. Automated contour initialization

Objective of the contour initialization procedure was the de-
tection of pixels that are likely to belong to the lumen and
media-adventitia borders. Two discrete initialization steps were
defined to this end, each used for the initialization of the re-
spective border [19].

At the first initialization step, intensity information was used
for detecting in I (r, �) artifacts marking the border between the
lumen and wall structures. More specifically, the lumen border
was initialized as the set of pixels cint = {pint = [�, �]}, which
satisfy the following condition:

I (�, �) > T and I (r, �) < T , ∀r < �, (2)

where T is a constant, the value of which was set experimentally.
This procedure essentially took into account high-frequency
details of I (r, �) in the radial direction to localize the respective
border.

As opposed to the first initialization step, which relied on ex-
ploiting high-frequency image information, in the second step
low-frequency information was taken into account. The motiva-
tion behind this choice lies in the observation that in the IVUS

image the adventitia is represented by a thick echodense ring
which corresponds to a thick bright curve in polar coordinates
in contrast to the echolucent lumen and intima/media structures.
Thus, performing low-pass filtering to suppress high-frequency
details corresponding to the latter, and, subsequently, consid-
ering only the remaining lower-frequency information is a
justified choice for facilitating the correct localization of
the media-adventitia border. More specifically, the media-
adventitia border was initialized as the set of pixels cext =
{pext = [�, �]}, for which

Iext(�, �) = max
r>�

{Iext(r, �)}, (3)

where [�, �] are the points of the initial internal contour and
Iext is obtained from I by means of low-pass filtering of I in the
radial and tangential directions to suppress higher-frequency
details corresponding to the internal contour. To this end, filters
H(z), H(z2), H(z4) and H(z8) were applied row-wise and
column-wise to image I, where

H(z) = 1
2 (1 + z−1). (4)

Contour initialization was completed by smoothing the ini-
tial contours cint, cext, so that they can better approximate the
true luminal and media-adventitia borders, which are smooth,
continuous functions of �. This was performed by means of
contour low-pass filtering in the tangential direction. For sim-
plicity, the low-pass filters H(z2i

), i = 0, . . . , M − 1 that are
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based on the Haar filter, previously used for image low-pass
filtering, were again employed. Pixel sets cint, cext, as modified
by the smoothing procedure, were then used as input to the
snake, as discussed in the following section.

2.4. Active contour model

In our approach, the active contour model’s energy functional
given in (1) was defined as

Esnake = Econt + Ecurv + Eimage, (5)

where the first two terms corresponded to the internal energy,
while the third term corresponded to the external one. Specifi-
cally, Econt was the contour continuity energy (caused the snax-
els to become more equidistant), Ecurv was the contour cur-
vature energy (the smoother the contour was, the less was the
curvature energy), while Eimage was the image energy (forced
the snake to be attracted by image features). More specifically,
considering a set of snaxels S = {s1, s2, . . . , sN } the partial en-
ergy terms were defined as

Econt = |�̄ − |si − si−1||, (6)

where � is the average distance between all pairs |si − si−1|,
Ecurv = |si−1 − 2si + si+1|2 (7)

and

Eimage = −|∇I |2, (8)

where I is the image intensity.
In more detail, total energy at every point was calculated as

a linear combination of the aforementioned terms, i.e.

Esnake,i = �Econt,i + �Ecurv,i + �Eimage,i , (9)

where �, � and � were appropriate weighting factors, which
controlled the relative influence between the terms. In particu-
lar, � was responsible for contour continuity in that a high value
made snaxels more evenly spaced, � was responsible for snake
corners in that a high value for a specific snaxel made the an-
gle between snake edges more obtuse, while � was responsible
for making snaxels more sensitive to the image energy, rather
than to continuity or curvature. The parameters �, � and � were
set to 1.09, 50 and 32, respectively, on the basis of multiple
experimental segmentation tests we conducted, and remained
constant during the segmentation process.

2.5. In vivo validation of the segmentation model

2.5.1. In vivo IVUS dataset
To validate in vivo the proposed segmentation model, 17 ar-

terial segments (right coronary artery, RCA, n=7; left anterior
descending, LAD, n = 4; left circumflex artery, LCx n = 6)
with an average length of 85.7 ± 17.1 mm from 9 patients
were investigated with IVUS. The Institutional Medical Ethics
Committee approved the study, and all patients gave written
informed consent. From the resulting pool of IVUS images,

50 were randomly selected, and segmented both manually and
automatically.

2.5.2. Intra- and inter-observer agreement of manual
segmentation

Manual segmentation was accomplished by two indepen-
dent IVUS experts according to the accepted international stan-
dards [1], and used as reference in the method comparison
study. To improve the accuracy of their segmentation, both ex-
perts were allowed to evaluate the recorded on S-VHS real-
time display of IVUS images, and repeatedly edit the detected
contours until full satisfaction. The intra-observer agreement
(IOA) of the manual segmentation was assessed by compar-
ing the within-expert segmentations initially and a month apart,
whereas for the inter-observer agreement (INA) the between-
experts segmentations compared. The IVUS morphometric pa-
rameters used for the IOA and INA of manual contour detec-
tion included lumen cross-sectional area (LCSA, mm2), vessel
cross-sectional area (VCSA, mm2), wall cross-sectional area
(WCSA, mm2), maximum lumen diameter (MLD, mm), and
maximum vessel diameter (MVD, mm), all defined in Fig. 1.
The LCSA, WCSA, and MVD were used as measures for the
detection accuracy of lumen borders, whereas VCSA, WCSA,
and MVD were used as measures for the detection accuracy of
media-adventitia borders.

2.5.3. Automated versus manual segmentation
To assess the performance of the automated segmentation

versus the manual reference, the automatically determined bor-
ders compared with the ones derived from manual segmenta-
tion. Cross-sectional areas (LCSA, VCSA, and WCSA, n=50)
and maximum diameters (MLD and MVD, n = 50) were used
as compared parameters. The average of these parameters in the
between-experts manual segmentations was used as reference.

For the temporal evaluation of the automated method versus
the manual reference, the mean duration of manual (n=3) and
automated segmentation (n=1) were calculated and compared.

2.5.4. Statistical analysis
For the assessment of IOA and INA of manual segmentation,

as well as for the method comparison study, Bland–Altman
analysis [20], and linear regression analysis were applied. The
analyses were performed with the statistical package SPSS
12.0 (SPSS Inc, Chicago, IL, USA). All results were expressed
as mean ± SD, and p < 0.05 was considered as the level of
significance.

3. Results

3.1. Intra- and inter-observer agreement of manual
segmentation

Table 1 presents the IOA and INA of manual segmentation
for all the calculated parameters. Manual segmentation had sig-
nificantly high IOA and INA with mean differences (Md) very
close to zero, and the differences distributed within the limits of
agreement (Md±2SD). These findings supported the robustness
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Table 1
Intra- and inter-observer agreement of manual segmentation

LCSA (n = 50) VCSA (n = 50) WCSA (n = 50) MLD (n = 50) MVD (n = 50)

IOA r 0.99 0.99 0.99 0.98 0.99
Md 0.13 −0.10 0.08 0.06 0.00
±2SD 0.95 0.80 0.80 0.30 0.21

INA r 0.96 0.98 0.97 0.95 0.96
Md 0.40 0.10 0.30 0.16 0.06
±2SD 2.10 1.90 2.00 0.62 0.58

IOA = Intra-observer agreement, INA = Inter-observer agreement, Md = Mean difference, ±2SD = Limits of agreement. Md and ±2SD are expressed in mm2

for lumen cross-sectional area (LCSA), vessel cross-sectional area (VCSA), wall cross-sectional area (WCSA), and in mm for maximum luminal diameter
(MLD), and maximum vessel diameter (MVD). For all r values p < 0.001.

of the manual segmentation, utilized as reference in the
subsequent method comparison study with the automated
segmentation.

3.2. Automated versus manual segmentation

Bland–Altman plots of differences between automated and
manual tracings against their means revealed that the proposed
model had minor differences as compared with the reference
manual for all the calculated parameters (Fig. 4). As shown,
the mean differences (Md) for LCSA, VCSA, WCSA, MLD
and MVD were 0.70 ± 2.68 mm2, 0.17 ± 4.58 mm2, −0.53 ±
3.50 mm2, 0.15 ± 0.56 mm, and 0.07 ± 0.78 mm, respectively.
Also, as depicted in the corresponding plots, the vast majority
of differences were distributed within the limits of agreement
(i.e. Md ±2SD), suggesting a high level of agreement between
manual and automated segmentation.

In addition, linear regression analysis revealed that the auto-
mated segmentation was strongly correlated with the reference
manual, and yielded the following results for LCSA, VCSA,
and WCSA, respectively: y=0.78x+2.09, r=0.86; y=0.66x+
3.65, r =0.90; y =0.55x +1.24, r =0.80 (p < 0.0001, n=50)

(Fig. 5). The corresponding equations for MLD and MVD
were: y = 0.78x + 0.82, r = 0.90; y = 0.70x + 1.20, r = 0.91
(p < 0.0001, n = 50). Fig. 6 depicts 12 IVUS images manu-
ally and automatically segmented. As shown, the performance
of the automated segmentation was remarkably high, even in
poor quality IVUS images due to artifacts, calcifications, or
branches, further supporting the detection efficiency of our au-
tomated segmentation approach.

With respect to the temporal evaluation of the automated
method, the required analysis time for the dataset of 50 ran-
domly selected images reduced by 96% with our method
(3.6 s per image for automated segmentation versus 85.8 s
per image for manual segmentation), suggesting that apart
from applicable and reliable, the method we propose is
markedly rapid.

4. Discussion

In this work we present a novel method for the segmenta-
tion of IVUS images based on the coupling of a fully auto-

mated contour initialization procedure with the application of
active contours. Major contributions of this work are: (a) the
technique developed for automated contour initialization, con-
fronting this way manual contour initialization which is a sig-
nificant drawback in the applicability of the majority of the
snake-based approaches, and (b) the in vivo assessment of the
proposed segmentation approach in human coronary arteries,
which revealed that our method performs highly reliable and
rapid IVUS images segmentation.

4.1. Fully automated contour initialization coupling an active
contour model

Traditionally, the segmentation of IVUS images was per-
formed manually, which is a time-consuming procedure with
results affected by high inter- and intra-user variability. To over-
come these limitations, several approaches for semi-automated
segmentation have been proposed in the literature. Sonka et al.
implemented a knowledge-based graph searching method in-
corporating a priori knowledge on coronary artery anatomy and
a selected region of interest prior to the automatic border detec-
tion [9]. Quite a few variations of active contour-based models
have also been proposed [12,16,17,21]; however, the common
characteristic of these approaches is that they require a varying
degree of manual contour initialization prior to the application
of the active contours.

However, in clinical practice the most attractive segmenta-
tion approaches are the fully automated ones. A limited number
of such methods have been developed so far, such as the seg-
mentation based on edge contrast [22]; the latter is shown to be
an efficient feature for IVUS image analysis, in combination
with the grey level distribution. Brusseau et al. exploited an au-
tomatic method for detecting the luminal border based on an
active contour that evolves until it optimally separates regions
with different statistical properties without using a pre-selected
region of interest or initialization of the contour close to its
final position [13]. A fuzzy clustering algorithm for adaptive
segmentation of IVUS images was also investigated by Filho et
al. [23], whereas Cardinal et al. presented a 3D IVUS segmen-
tation approach, applying Rayleigh probability density func-
tions (PDFs) for modeling the pixel grey value distribution of
the vessel wall structures [24]. An automated approach based
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Fig. 4. Bland–Altman plots of differences between manual and automated segmentation against their mean for a, lumen cross-sectional area (LCSA, mm2),
b, vessel cross-sectional area (VCSA, mm2), c, wall cross-sectional area (WCSA, mm2), d, maximum luminal diameter (MLD, mm), and e, maximum vessel
diameter (MVD, mm). The solid black lines represent the mean differences (Md), while the dotted lines denote the limits of agreement (±2SD).

on deformable models was also reported by Plissiti et al., who
employed a Hopfield neural network for the modification and
minimization of an energy function, as well as a priori vessel
geometry knowledge [25].

In the current work, the active contour model developed
for IVUS images segmentation was based on the OpenCV
computer vision library [26]. The proposed approach did not
require manual initialization of the contours; instead, the ini-
tialization of the contours in each frame was based on the
analysis of IVUS morphologic characteristics. Also, the inher-
ent property of active contours to dynamically and automati-
cally deform added to the feasibility and accuracy of the final
segmentation.

4.2. In vivo validation of the automated segmentation method

The proposed method was validated against manual contour
detection, which was considered as the reference technique.

The manual segmentation was highly reproducible and accu-
rate in our study as indicated by the significantly high IOA
and INA agreement. The validation study was performed by
Bland–Altman and linear regression analysis in 50 randomly
selected images, using areas and diameters as compared pa-
rameters. Bland–Altman analysis increased the reliability of the
method comparison study, since it is considered as the most
appropriate test for such analyses [20]. In fact, this test is con-
sidered superior to linear regression analysis given that the lat-
ter provides information about the degree of association only,
ignoring the degree of agreement. Both Bland–Altman and lin-
ear regression analysis yielded considerably high agreement
between the proposed and the reference method for all param-
eters. Also, these results were in good agreement with others
reported in the literature [8,12]. As far as the analysis time is
concerned, this significantly reduced by 96% in the described
method as compared to the reference manual, without compro-
mising accuracy.
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Fig. 5. Correlation between automated and manual segmentation for a, lumen cross-sectional area (LCSA, mm2), b, vessel cross-sectional area (VCSA, mm2),
c, wall cross-sectional area (WCSA, mm2), d, maximum luminal diameter (MLD, mm), and e, maximum vessel diameter (MVD, mm).

In addition, the constructed segmentation framework showed
high effectiveness providing satisfactory border detection even
in bad-quality images with either artifacts (e.g. shadowing ef-
fect of calcified areas, guidewire artifacts), or gaps due to the
presence of major branches (Fig. 6).

Another asset of our methodology is that it performed very
effectively in non-sequential IVUS images. This suggests that
our method is quite robust, and provides the potential of com-
bining it with other approaches that utilize the continuity of se-
quential IVUS frames, towards even more accurate and quicker
segmentation results.

5. Conclusion and clinical perspective

The active contour-based model we present in this study
constitutes a novel, fully automated and feasible approach,

enabling accurate and rapid segmentation of IVUS images.
Provided that the proposed approach facilitates the rapid
and accurate contour detection in hundreds of IVUS im-
ages acquired during a routine pullback, it could potentially
constitute a valuable tool for both clinical and research pur-
poses. First, it could facilitate plaque morphometric analyses
including planimetric, volumetric and wall thickness calcu-
lations, thereby contributing to rapid, and potentially on-site,
decision-making. Similarly, the method could be utilized for
the evaluation of plaque progression or regression in follow-up
studies investigating the effect of drugs, or local mechanical
interventions (e.g. stents).

We and others have developed and validated an in vivo IVUS
and biplane angiography fusion technique for the anatomi-
cally correct 3D reconstruction of human coronary arteries
[4–6,27]. This technique is coupled with computational fluid
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Fig. 6. A representative sample of 12 randomly selected IVUS images manually and automatically segmented. The automated segmentation performed well,
even in bad-quality images with guidewire artifacts, branches, or calcifications.
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Fig. 7. An example of a 3D reconstructed right coronary artery. The
cross-sections correspond to the borders extracted by applying the proposed
segmentation model. The trajectory of the IVUS catheter is also depicted.

dynamics permitting the investigation of the role of local hemo-
dynamic factors (e.g. endothelial shear stress, tensile stress)
[28], and local geometric parameters (e.g. vessel curvature) [29]
at certain locations along the coronary lumen, on atherosclerosis
development and progression, as well as on arterial remodel-
ing. The reliable and quick IVUS segmentation constitutes the
foundation for the implementation of the abovementioned re-
construction technique, and our segmentation method provides
this perspective. In Fig. 7 we present a representative example
of a geometrically correct 3D reconstruction of a right coronary
artery, based on the segmentation of the IVUS images with the
proposed active contour model.
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