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Abstract

Coronary ectasia is defined as local or generalized aneurysmal dilatation of the coronary arteries. The present review summarizes the molecular,
cellular and vascular mechanisms which are involved in the pathobiology of coronary ectasia. Coronary ectasia likely represents an exaggerated
form of expansive vascular remodeling (i.e. excessive expansive remodeling) in response to atherosclerotic plaque growth. Enzymatic degradation
of the extracellular matrix of the media is the major pathophysiologic process that leads to ectasia. Atherosclerotic lesions within ectatic regions of
the coronary arteries appear to be highly inflamed high-risk plaques with proclivity to rupture. Better understanding of the pathogenetic processes
involved in coronary ectasia is anticipated that will provide a further insight into the clinical significance and natural history of this entity, and may
also have direct clinical implications in the management and follow-up strategy of this condition.

© 2008 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Aneurysms in the human coronary arteries are a contro-
versial phenomenon and the subject of an ongoing debate since
many issues on them remain obscure. In contrast to discrete
aneurysms recognized in certain cases, the terms aneurysmal
coronary artery disease, dilating arteriosclerosis or coronary
artery ectasia are commonly used to denote a more generalized
defect affecting the coronary tree, often in the presence of
atherosclerosis [1,2]. Instead of representing a simple anatomic
variation, ectasia has direct clinical implications, as it has been
linked to clinical manifestations of coronary artery disease
(CAD), such as stable angina and acute coronary syndromes
[3—5]. Everyday clinical practice tends to underestimate the
impact of coronary ectasia merely due to the yet unknown
natural history of this condition, its relative rarity and the
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subsequent difficulties in conducting randomized trials to
compare different forms of treatment. The continuously ex-
panding implementation of coronary angiography in the
investigation of cardiovascular disease is likely to culminate
in higher absolute numbers of patients diagnosed with coro-
nary ectasia. In this setting, the need for appropriate clinical
recommendations should not be overlooked.

The purpose of this review is to summarize the molecular,
cellular and vascular mechanisms, which are involved in the
pathobiology of aneurysmatic lesions within the coronary
arteries. Understanding these mechanisms may be of particular
importance on acquiring an insight into the nature of coronary
ectasia and its possible relation to the atherosclerotic process,
and may also have direct clinical implications in the manage-
ment and follow-up strategy of this condition.

2. Definition and classification

Coronary ectasia is arbitrarily defined as localized or diffuse
dilatation of the coronary lumen exceeding the diameter of
normal adjacent segments or the diameter of the patient’s largest
coronary artery by 1.5 times [6]. On the basis of their luminal
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Fig. 1. a. Diffuse ectasia (type III) of the right coronary artery (arrow), b. Segmental ectatic lesions (type IV) of the left coronary artery (arrows), c. IVUS depiction of a
fusiform coronary aneurysm (arrow) between atherosclerotic segments (reprinted from [14]) d, e, f. CT images of left coronary artery aneurysms (arrows; reprinted
from [17] and [18]), g, h. Coronary magnetic resonance angiograms employing black-blood (left) or white-blood (right) contrast from a patient with ectatic right

coronary artery (arrows; reprinted from [19]).

diameter, coronary aneurysms are classified as small (<5 mm),
medium (5—8 mm) or giant (>8 mm) [7]. A further geometric
classification defines an aneurysm as saccular when its maxi-
mum transverse diameter exceeds its longitudinal aspect, and as
fusiform when its longitudinal dimension is greater than its
maximum transverse diameter [8]. Also, coronary aneurysms
are classified as true, when the vascular wall contains all normal

vascular layers, or as pseudoaneurysms (typically saccular),
when there is a loss of normal vascular wall integrity, resulting in
the formation of thin-walled structures that lack normal arterial
wall layers [8]. As for its topographical extent in the major
epicardial coronary arteries, ectasia is subcategorized in the
following 4 types: type 1, diffuse ectasia of two or three arteries;
type 11, diffuse disease in one artery and localized in another;

Table 1

Classification of coronary aneurysms

Characteristic Categories Description

Luminal diameter Small Luminal diameter of the aneurysm <5 mm
Medium Luminal diameter of the aneurysm 5-8 mm
Giant Luminal diameter of the aneurysm >8 mm

Transverse and longitudinal size Saccular The maximum transverse diameter exceeds the longitudinal dimension of the aneurysm
Fusiform The longitudinal dimension exceeds the maximum transverse diameter of the aneurysm

Vascular wall integrity

Topographical extent

True aneurysms
Pseudo aneurysms
Type I

Type I

Type 11

Type IV

All normal vascular layers present

Loss of normal vascular wall integrity

Diffuse ectasia of two or three vessels

Diffuse ectasia in one vessel and localized in another
Diffuse ectasia of one vessel only

Localized or segmental ectasia




A.P. Antoniadis et al. / International Journal of Cardiology 130 (2008) 335-343 337

Table 2
Prevalence of coronary ectasia in angiographic series

Source Number of subjects Prevalence (%)
Swaye et al. [1] 20,087 49
Giannoglou et al. [9] 10,524 2.7
Tunick et al. [10] 8,422 0.2
Hartnell et al. [10] 4,993 1.4
Markis et al. [6] 2,457 1.2

type III, diffuse ectasia of one artery only (Fig. 1a); type 1V,
localized or segmental ectatic lesions [6] (Fig. 1b) (Table 1).

3. Epidemiology

The prevalence of aneurysmal coronary disease in angio-
graphic series varies between 0.2 and 10% (Table 2) [1,6,9—11].
Coronary Artery Surgery Study registry studied 20,087 subjects
and reported a prevalence rate of 4.9% [1]. Recently, we
reported a prevalence rate of 2.7% in an angiographic series of
10,524 patients [9]. A prevalence of 1.4% for coronary ancu-
rysms was reported in an autopsy study of 694 consecutive
subjects, which still lies within the range of the other angio-
graphic series [12]. However, the above frequencies may not be
representative of the actual prevalence of coronary aneurysms in
the general population, as there is a selection bias in patients
referred for diagnostic coronary angiography. Furthermore,
different demographic characteristics of the populations studied,
as well as genetic heterogeneity of the subjects may account for
the differences in the frequency of ectasia in the above reports.
Also, as the angiographic diagnosis of ectasia is operator de-
pendent, inter-observer variability may merely be responsible
for the prevalence discrepancies in different cohorts.

4. Etiology

The co-existence of coronary ectasia with coronary athe-
rosclerosis raised the concept that ectasia may represent a
variant of CAD [1,2,6,9]; however a definite link between
atherosclerosis and ectasia has not been confirmed. Further-
more, coronary aneurysms are seen in association with sys-
temic inflammatory vasculitides (e.g. polyarteritis nodosa,
Kawasaki disease, Takayasu arteritis, Behget’s disease),
connective tissue disorders (e.g. rheumatoid arthritis, systemic
lupus erythematosus, scleroderma, ankylosing spondylitis),
hereditary collagen defects (e.g. Ehlers—Danlos syndrome,
Marfan syndrome, hereditary hemorrhagic telangiectasia),
bacterial infections and congenital malformations [13]. More-
over, aneurysmatic lesions (mostly pseudoaneurysms) may
occur after coronary interventions, such as balloon angio-
plasty, stent implantation, directional coronary atherectomy,
pulsed laser coronary angioplasty and brachytherapy [13].

5. Diagnosis

Coronary angiography is the gold standard in the diagnosis
of coronary aneurysms, providing information not only for

their shape, size, topography and extent, but also for the
presence of coexistent coronary stenoses (Fig. la and b).
Intravascular ultrasound provides a more detailed visualization
of the arterial wall and can identify normal arterial segments
adjacent to stenotic lesions, which are often falsely character-
ized as aneurysms by conventional angiography [14,15]
(Fig. 1c). Moreover, intravascular ultrasound can distinguish
a true aneurysm from a pseudoaneurysm [16]. Non-invasive
diagnostic modalities such as transthoracic echocardiography
[13], computed tomography [17,18], and magnetic resonance
imaging [19] are also useful in the diagnosis of coronary
ectasia (Fig. 1d-h).

6. Natural history and clinical manifestation

The clinical presentation of coronary aneurysms varies
from asymptomatic to atypical chest pain, stable angina and
acute coronary syndromes. In cases where coronary aneur-
ysms accompany coronary stenoses, the symptoms are most
commonly associated with the extent and severity of coexis-
ting obstructions [1,6]. However, isolated coronary ectasia
without being associated with coronary stenosis may also
present with stable angina [20], positive treadmill test [4],
increased levels of biochemical markers [3] or even myo-
cardial infarction [5]. The natural history and clinical manifes-
tation of coronary ectasia was investigated in a series of 3,870
subjects undergoing coronary angiography. In the subgroup of
patients presenting with an acute coronary syndrome, coronary
ectasia was associated with the culprit lesion in one third of
cases [21]. Another study prospectively assessed the clinical
outcome of 54 patients with an angiographic diagnosis of
ectasia. A major cardiac event on follow-up was documented
in 37% of cases [22]. Finally, in a small follow-up study of five
patients with ectasia who suffered a myocardial infarction, the
clinical event was attributed to thrombus formation in a pre-
viously non-stenosed aneurysmatic arterial region [5].

Further insight into the natural history of ectasia comes
from experimental animal data, which demonstrated that
high-risk plaques with severe lipid infiltration and inflamma-
tion and thin fibrous cap develop in coronary artery regions
which exhibit localized dilatation (aneurysm) of the arterial
wall (Fig. 3) [23]. These experimental findings in combina-
tion with the clinical outcome studies suggest that coronary
ectasia is linked to plaque instability with an increased risk for
future adverse cardiovascular outcome. However, not all the
ectatic lesions exhibit follow similar natural history trajectory
and the explanation of this remains to be further investigated.

7. Histopathology

There are several histopathologic similarities between ectasia
and atherosclerosis. Aneurysmatic coronary segments demon-
strate a marked degradation of the medial collagen and elastin
fibers with disruption of the internal and external elastic lamina
[2,6,12]. These findings, in association with the observation that
cases in which the media was intact and uninvolved had no



338 A.P. Antoniadis et al. / International Journal of Cardiology 130 (2008) 335-343

evidence of ectasia, suggest that the enzymatic degradation of
the media may be a key component in the pathogenesis of
coronary ectasia [6]. Of note, the severity of the changes in the
media correlates positively with the diameter of aneurysmal
lesions [24]. Chronic inflammatory infiltration of monocytes
and lymphocytes in the media and adventitia, as well as neo-
vascularization and intramural hemorrhage within the media
have also been decribed [25].

8. Pathophysiology of ectasia: role of enzymatic degradation
of extracellular matrix

Based on the clinical presentation and histopathologic
findings, it has been suggested that coronary ectasia represents
a particular form of arterial remodeling in response to local
plaque growth. Arterial remodeling refers to alterations in the
total arterial cross sectional area i.e. the area within the external
elastic membrane in response to local hemodynamic and bio-
chemical factors [26]. Three distinct remodeling patterns
have been described: (a) constrictive remodeling representing
shrinkage of external elastic membrane and lumen area,
(b) compensatory expansive remodeling, in which the total
external elastic membrane area increases, but the lumen is
preserved, and (c) excessive expansive remodeling, in which
both external elastic membrane and lumen size increase
[23,26-29].

Coronary ectasia could be considered as an exaggerated
form of excessive expansive remodeling since enzymatic
degradation of the extracellular matrix (ECM) of the media
appears to be a fundamental pathobiologic process in both
conditions [23,27-29]. Overexpression of matrix metallo-
proteinases (MMPs) has been associated with expansive
arterial remodeling in experimental animal models [30],
while their suppression acts against it [31]. In humans,
abdominal aortic aneurysms have been associated with
increased production of MMPs [32] while post-mortem
studies also support the role of MMPs in expansively
remodeled coronary arteries [33]. Increased expression of
the MMP-3 gene was reported as an independent predictor of
coronary aneurysms [34]. Other classes of proteolytic
enzymes such as cystein proteinases (e.g. cathepsins K, L,
and S) and serine proteinases (e.g. neutrophil elastase,
plasminogen activators, plasmin, chymase and tryptase)
may play an important role in the pathogenesis of coronary
ectasia [35—38]. Matrix degrading enzymes may cause severe
disruption of the internal elastic lamina providing a gateway
for the inflammatory cells to extend from the intima into the
media, elaborate matrix proteases, degrade the collagen and
elastin fibers, weaken the arterial wall integrity, and ulti-
mately promote an ectatic transformation of the wall
[28,31,39].

9. Factors associated with coronary ectasia

A variety of factors may influence the formation of ectasia
by inducing activation of matrix degrading enzymes and

subsequent excessive expansive remodeling. The majority of
these are either directly or indirectly linked to the athero-
sclerotic process (Fig. 2).

9.1. Role of lipoproteins

Indirect evidence for an association between plasma
lipoprotein levels and coronary artery aneurysms comes
from reports in cases of familial hypercholesterolemia
[40,41]. One study found that coronary ectasia is more
frequent in patients with heterozygous familial hypercholes-
terolemia than in healthy controls, and is associated with
reduced high-density lipoprotein cholesterol (HDL-C) levels
[42]. Interestingly, reduction of serum low-density lipopro-
tein cholesterol (LDL-C) levels by repeated plasma
exchange in a patient with heterozygous familial hyperch-
olesterolemia led to angiographic improvement of coronary
ectasia [43]. At the molecular level, LDL-C binds elastin,
collagen and proteoglycans [44], and undergoes oxidative
modification which further increases its affinity to matrix
components. Oxidized LDL-C is subsequently engulfed by
macrophages and smooth muscle cells resulting in foam cell
formation. Foam cells in turn enhance active breakdown of
the extracellular matrix by elaborating matrix degrading
enzymes [45]. Also, oxidized LDL-C upregulates MMPs
[46].

9.2. Role of inflammation

9.2.1. Role of adhesion molecules

Inflammation plays a key role in the aneurysm formation
in the coronaries, as well as in the systemic circulation.
Adhesion molecules take part in the pathogenesis of athe-
rosclerosis by mediating the adherence and transmigration of
circulating monocytes across the vascular endothelium.
Plasma levels of E-selectin, intercellular adhesion mole-
cule-1 (ICAM-1) and vascular cell adhesion molecule-1
(VCAM-1) were significantly higher in patients with isolated
ectasia compared with patients with obstructive coronary
artery disease alone, or with normal coronary arteries. A
significant positive correlation between the levels of these
adhesion molecules and the length of vascular segments with
ectasia was also found [47]. Higher levels of ICAM-1 and
VCAM-1 were also noted in cases with a combination of
ectasia and obstructive coronary artery disease [48].

9.2.2. Role of C-reactive protein (CRP)

CRP levels have been found significantly higher in
patients with isolated coronary ectasia, than in those with
obstructive coronary disease or normal coronary arteries,
suggesting a more severe and extensive inflammatory cell
infiltration in patients with ectasia [49].

9.2.3. Role of vascular endothelial growth factor (VEGF)
VEGEF has potent angiogenic properties and possesses an
important role in inflammatory processes. Significantly higher
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Fig. 2. Schematic overview of the pathogenesis of coronary artery ectasia. A variety of factors implicated in the atherosclerotic process promote the expression
and activity of matrix degrading enzymes, which cause severe disruption in the internal elastic lamina (IEL) and provide a gateway for the inflammatory cells to
extend into the media, favouring excessive expansive remodeling and ultimately leading to formation of coronary ectasia. RAS: renin—angiotensin system.

VEGEF levels were found in patients with diffuse coronary
ectasia [50]. This comes in consistence with neovasculariza-
tion being described in aneurysmatic arterial regions, while it is
also an established feature of atherosclerosis [25]. Further-
more, VEGF triggers the formation of MMPs, thus creating a
vicious cycle which maintains and progresses structural
alterations in the vascular wall [51].

9.2.4. Role of leukotriens

Leukotriens are abundantly expressed in atherosclerotic
lesions, and are linked to higher atherosclerotic burden and
CAD manifestations [52]. In experimental models, increased
expression of the 5-lipoxygenase gene predisposed to aortic
aneurysm formation [53]. 5-lipoxygenase overexpression
co-localized with MMPs release by macrophages within the
vascular wall [54].

9.2.5. Role of infectious agents
As for the contribution of infectious agents in the deve-
lopment of aneurysms in the coronary arteries, particular

attention has been given to the role of Chlamydia pneumoniae,
an agent that is implicated in the pathogenesis of athero-
sclerosis. Antibodies against C. pneumoniae were higher in
patients with isolated coronary ectasia than in normal controls,
independently of established risk factors for atherosclerosis
[55]. The implication of C. pneumoniae in coronary ectasia is
likely mediated by the production of heat-shock protein 60
which regulates the expression of MMPs [56,57].

9.3. Role of renin—angiotensin system

Angiotensin Il is a major determinant of vascular wall
homeostasis as it favors atherosclerosis via inducing
endothelial dysfunction, expression of inflammatory media-
tors, generation of oxidative stress, cellular proliferation,
fibrosis and thrombosis [58]. A specific genetic polymorph-
ism leading to increased plasma and tissue levels of
angiotensin Il was associated with coronary ectasia [59].
Elevated angiotensin II levels may facilitate the degradation
of the media by inducing interleukin-6 which in turn
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stimulates the activity of matrix degrading enzymes provid-
ing a link to ectasia [60].

9.4. Role of homocysteine

In case control studies, plasma homocysteine levels were
significantly higher in patients with isolated coronary ectasia,
than in control subjects with angiographically normal coronary
arteries [61,62]. Also, no significant differences in plasma
homocysteine levels were found among patients with coronary
ectasia and those with coronary artery disease [62]. Homo-
cysteine levels were also positively correlated with the number
of the coronary segments with ectasia, but not with the mean
diameter of the ectatic lesions [61]. Elevated homocysteine
levels may facilitate the degradation of the medial arterial layer
by inducing serine proteinase activity in arterial smooth
muscle cells, as well as by activating MMP-2 [63].

9.5. Role of insulin

Insulin is implicated in both atherosclerosis and coronary
ectasia. As for its relation to coronary ectasia, a study revealed
an association between fasting plasma insulin levels and
coronary ectasia among patients with heterozygous familial
hypercholesterolemia [64]. Hyperinsulinemia may exacerbate
the remodeling process in the setting of coronary athero-
sclerosis, by stimulating the proliferation and migration of
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vascular smooth muscle cells from the arterial media and
interfering with extracellular matrix production [65].

9.6. Role of nitric oxide (NO)

NO, which is well known for its vasodilatory, anti-
inflammatory, anti-apoptotic and anti-thrombotic effects may
generate metabolites, which predispose to ectasia. Indirect
evidence for such an association came from a report of
increased frequency of ectasia among individuals previously
exposed to herbicide sprays. Herbicide sprays increase acety-
locholine, which in turn stimulates NO production [66].
Expression of inducible NO synthase (iNOS) and plasma
levels of NO end-products were also increased in an animal
model of abdominal aortic aneurysm, while inhibition of iNOS
limited aneurysm expansion [67]. Another study showed that
iNOS upregulation was followed by increased MMPs ex-
pression [68], providing a plausible molecular link with
aneurysm formation. Furthermore, NO by-products (e.g. per-
oxynitrate, nitrate) appear to play an important role in coronary
ectasia by activating latent MMPs [69,70].

9.7. Role of coronary local hemodynamics
Local coronary flow environment may lead to coronary

ectasia. Atherosclerotic lesions develop and progress in
arterial regions with low endothelial shear stress [71]. Recent
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histopathology studies have also showed that high-risk athe-
rosclerotic plaques with intense lipid accumulation, inflam-
mation, internal elastic lamina degradation and excessive
expansive remodeling develop in areas in which low endo-
thelial shear stress occurs [23,28,29]. Within that vascular
environment in a locally expanded coronary region, low
endothelial shear stress is perpetuated, fostering the forma-
tion of ectasia and ultimately transformation of an athero-
sclerotic lesion into a high-risk plaque (Fig. 3) [23,28].

Hypertrophic cardiomyopathy may also predispose to the
formation of coronary ecstatic lesions. The abnormally high
wall tension of the hypertrophic myocardium may act as
giant muscle bridge, causing systolic blood flow cessation.
High intraluminal pressure and subsequently high tensile
stress, especially during ventricular systole, may conse-
quently promote the ectatic vascular transformation within
the bridge [72,73].

9.8. Role of genetic predisposition

Some indirect evidence for the influence of genetics to the
development of coronary ectasia comes from its association
with the angiotensin converting enzyme genotype [59] and
also with hereditary conditions like familial hypercholester-
olemia [40,41]. Genetic variations may also account for the
differences in the frequency of ectasia in certain geographi-
cal regions [11]. Of interest, African American race was
found as a protective factor against the formation of coronary
aneurysms in children with Kawasaki disease [74]. However,
no definite genetic defect, which would lead to ectasia has
yet been shown.

10. Ectasia: local or generalized condition?

Another feature of aneurysmal coronary disease, probably
requiring special consideration is its frequent occurrence in
association with more widespread vascular abnormalities.
Several studies have demonstrated increased prevalence of
coronary aneurysms in patients with aneurysms in the thoracic
and abdominal aorta, the pulmonary, iliac, femoral, popliteal,
anterior communicating and basilar artery [13]. Furthermore,
varicosities of the coronary veins frequently coexist with
coronary aneurysms [20], while varicose veins [75] and
varicocele [76] have been recorded with higher frequencies
among patients with coronary ectasia. These data suggest a
more generalized vascular defect, affecting not only the arterial
but the venous system as well. An example of a generalized
disease associated with coronary ectasia is Kawasaki syn-
drome, an acute febrile childhood vasculitis of unknown origin
that leads to coronary, as well as systemic, aneurysm for-
mation. Increased levels of inflammatory mediators (e.g.
VEGF) [77] and matrix degrading enzymes (e.g. MMPs,
neutrophil elastase) have been reported in this condition [78].
Another pathway via which Kawasaki disease may trigger
aneurysm formation involves induction of NO and its
detrimental metabolite, peroxynitrite [79].

11. Conclusion

Ectasia is a coronary abnormality, which constitutes a
localized or diffuse dilatation of the vascular wall and lumen.
Activation of proteolytic enzymes and enzymatic degradation
of the media are the most critical molecular events leading to a
structural defect of the coronary wall, and eventually aneurysm
formation. This is mediated via several factors involved in the
atherosclerotic process, such as accumulation of lipoproteins
into the intima, inflammatory cell infiltration, rennin—angio-
tensin system activation and generation of oxidative stress,
which lead to excessive expansive arterial remodeling. Altered
NO metabolism and coronary hemodynamics, in particular low
endothelial shear stress, also play a role, whereas the effect of
genetic background is yet under investigation.

Data presented in this review support the presence of
common underlying molecular mechanisms involved in the
development of ectasia, atherosclerosis and excessive expan-
sive remodeling. Taking into consideration the complexity of
these processes and numerous different interactions involved,
it would be difficult to claim such an association for the
entirety of cases with aneurysmal coronary dilatation. How-
ever, it would be useful for clinicians to be aware of the
evidence that coronary ectasia develops in an intensively in-
flamed vascular wall, which predisposes to plaque instability
and increased risk of adverse cardiovascular events despite
preservation of the coronary lumen. Further experimental
investigations are needed to reveal the molecular mechanisms
involved in ectasia. In addition, large-scale clinical studies are
warranted to shed light into the clinical manifestation and
natural history of coronary ectasia.
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