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Abstract—Intravascular ultrasound (IVUS) constitutes a valuable technique for the diagnosis of coronary
atherosclerosis. The detection of lumen and media-adventitia borders in IVUS images represents a necessary step
towards the reliable quantitative assessment of atherosclerosis. In this work, a fully automated technique for the
detection of lumen and media-adventitia borders in IVUS images is presented. This comprises two different steps
for contour initialization: one for each corresponding contour of interest and a procedure for the refinement of
the detected contours. Intensity information, as well as the result of texture analysis, generated by means of a
multilevel discrete wavelet frames decomposition, are used in two different techniques for contour initialization.
For subsequently producing smooth contours, three techniques based on low-pass filtering and radial basis
functions are introduced. The different combinations of the proposed methods are experimentally evaluated in
large datasets of IVUS images derived from human coronary arteries. It is demonstrated that our proposed
segmentation approaches can quickly and reliably perform automated segmentation of IVUS images. (E-mail:
mpapad@iti.gr) © 2008 World Federation for Ultrasound in Medicine & Biology.
Key Words: Intravascular ultrasound, Contour detection, Segmentation, Radial basis functions.
INTRODUCTION AND LITERATURE

Medical images derived from several technologies (e.g.,
X-ray, ultrasound, computed tomography, magnetic res-
onance, nuclear imaging) are extensively used to im-
prove the existing diagnostic systems and facilitate med-
ical research. Coronary angiography is acknowledged as
the gold standard for the diagnosis of coronary artery
disease. However, coronary angiography is restricted by
its inherent inability to depict the arterial wall since it
illustrates only the silhouette of the coronary lumen. In
the last two decades, intravascular ultrasound (IVUS) has
been introduced as a complement to angiography diag-
nostic technique aiming to provide more accurate imag-
ing of coronary atherosclerosis (Mintz et al. 2001).

IVUS is a catheter-based technique that renders
two-dimensional cross-sectional images of the coronary
arteries and provides information concerning the lumen
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and wall. In a typical IVUS image, three arterial regions
can be distinguished: the lumen, the vessel wall, consist-
ing of the intima and the media layers and the adventitia
plus surroundings (Fig. 1). The above regions are sepa-
rated by two borders: the lumen border, which corre-
sponds to the lumen-wall interface and the media-adven-
titia border, which represents the boundary between the
media and adventitia (Mintz et al. 2001). The reliable
and quick detection of these two borders is the goal of
IVUS image segmentation and also the basic step to-
wards the geometrically correct 3D reconstruction of the
arteries (Giannoglou et al. 2006a, 2006b; Slager et al.
2000; Coskun et al. 2003).

Traditionally, the segmentation of IVUS images has
been performed manually, which is a time-consuming
procedure affected by high inter- and intra-user variabil-
ity. To overcome these limitations, several approaches
for semiautomated segmentation have been proposed. In
(Herrington et al. 1992) after manual indication of the
general location of the boundary of interest by the user,
an edge detection filter is applied to find potential edge

points within the pointed neighborhood. The extracted

mailto:mpapad@iti.gr


IVUS contour detection ● M. PAPADOGIORGAKI et al. 1483
image data are used for the estimation of the closed
smooth final contour. Sonka et al. (1995) implemented a
knowledge-based graph searching method incorporating
a priori knowledge on coronary artery anatomy and a
selected region-of-interest prior to the automated border
detection.

Quite a few variations of active contour model have
been investigated (Kompatsiaris et al. 2000; Chatzizisis
2004) including the approach of (Parissi et al. 2006).
There, user interaction is required for the drawing of an
initial contour as close as possible to its final position;
using this initial contour, the active contour approxi-
mates the final desired border. The active contour or
deformable model principles have also been used for the
extraction of the lumen and medial-adventitia borders in
three dimensions after setting an initial contour
(Kovalski et al. 2000; Klingensmith et al. 2000). How-
ever, in this approach the contour detection fails for low
contrast interface regions such as the lumen border,
which in most images corresponds to weak pixel inten-
sity variation. In order to improve the active surface
segmentation algorithm for plaque characterization,
Klingensmith et al. (2004) used the frequency informa-
tion after acquiring the radio-frequency (RF) IVUS data.
RF data were also used in (Perrey et al. 2004) after in
vivo acquisition for the segmentation of the lumen
boundary in IVUS images. According to this approach,
tissue describing parameters were directly estimated

Fig. 1. A typical IVUS image with the lumen and media-
adventitia borders demarcated (LCSA, lumen cross-sectional
area, VCSA, vessel cross-sectional area, WCSA and wall cross-

sectional area). (Reprinted from Giannoglou et al. [2007]).
from RF data and a neuro-fuzzy inference system was
used to distinguish blood from tissue regions. Cardinal et
al. (2006) presented a 3D IVUS segmentation applying
Rayleigh probability density functions (PDFs) for mod-
elling the pixel grey value distribution of the vessel wall
structures, requiring, however, some manual tracing of
contours for initialization.

Despite facilitating the analysis of IVUS data com-
pared with their completely manual processing, the
aforementioned methods pose the restriction of needing
substantial human intervention during the analysis pro-
cess. This has proven quite restrictive for clinical prac-
tice, where fully automated approaches would be most
attractive. A limited number of approaches focusing on
the minimization of human intervention has been devel-
oped so far, such as the segmentation based on edge
contrast (Zhu et al. 2002); the latter was shown to be an
efficient feature for IVUS image analysis, in combination
with the grey level distribution. Specific automated ap-
proaches, which utilize the deformable model principles
in combination with other various techniques and fea-
tures reported in the related literature have also been
investigated. Brusseau et al. (2004) exploited an auto-
mated method for detecting the endoluminal border
based on an active contour. This evolves until it opti-
mally separates regions with different statistical proper-
ties without using a pre-selected region of interest or
initialization of the contour close to its final position.
However, in (Brusseau et al. 2004) the detection of the
media-adventitia boundary was not examined. Similarly
dos S. Filho et al. (2005) employed a fuzzy clustering
technique for the detection of the lumen boundary alone.
Another approach based on deformable models was re-
ported by Plissiti et al. (2004), who employed a Hopfield
neural network for the modification and minimization of
an energy function, as well as a priori vessel geometry
knowledge. Despite being to a significant extent auto-
mated, this method still requires manual estimation of the
boundaries in the first frame of the sequence of IVUS
images. Unal et al. proposed, (2006) a shape-driven
approach to the segmentation of IVUS images, based on
building a shape space using training data and, conse-
quently, constraining the lumen and media-adventitia
contours to a smooth, closed geometry in this space. An
automated approach for segmentation of IVUS images
based on a variation of an active contour model was
presented in (Giannoglou et al. 2007). The technique was
in vivo evaluated in images originating from human
coronary arteries. The initialization of the contours in
each IVUS frame was automatically performed using an
algorithm based on the intensity features of the image.
The initially extracted boundaries constituted the input to
the active contour model, which then deformed the con-
tours appropriately, identifying their correct location on

the IVUS frame; however, contour initialization based on
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intensity information alone is not most efficient, as dis-
cussed in the Results section below.

Other approaches reported in the literature for the
computer-assisted interpretation of IVUS images were
based on the calculation of the image energy for contour
detection, or on the detection of calcification regions,
which could in turn be used for contour detection. A
technique for the automated detection of calcification
regions based on fuzzy clustering was proposed in (dos
S. Filho et al. 2004); however, it remains unclear how
this should be used for assisting the automated detection
of the lumen and media-adventitia boundaries. In Luo et
al. (2003), the lumen area only of the coronary artery was
estimated using an internal energy, which describes the
smoothness of the arterial wall, and an external energy,
which represents the grayscale variation of the images
that constitute the IVUS sequence; the minimal energy
that defines the contour was obtained using circular dy-
namic programming. As opposed to (Luo et al. 2003), the
media-adventitial boundary only was considered (Gil et
al. 2006), where statistical classification techniques were
used for modelling the adventitia region.

This article presents a novel method for the fully
automated detection of lumen and media-adventitia
boundaries in IVUS images. Intensity information, as in
(Giannoglou et al. 2007), as well as the result of texture
analysis, generated by means of a multilevel discrete
wavelet frames decomposition, is used in two different
techniques for the initialization of the lumen and media-
adventitia contours. For the subsequent smoothing of
these initial contours, three techniques based on low-pass
filtering and radial basis functions (RBFs) are intro-
duced. The different combinations of the proposed meth-
ods are experimentally evaluated. Evaluation results

Fig. 2. Original IVUS image (left) and corresponding pol
the removal of ca
show that the combination of texture-based initialization
and RBF-based smoothing outperforms the other combi-
nations and succeeds in automatically generating results
that are in good agreement with those of manual seg-
mentation.

MATERIALS AND METHODS

Preprocessing and feature extraction

Preprocessing. As outlined above, the proposed
method uses intensity and texture features for contour
initialization. Preprocessing of the image data for the
purpose of contour detection and in particular for the
application of a texture description method to the data
consists of two steps: (1) representation of the images in
polar coordinates and (2) removal of catheter-induced
artifacts.

Representation of the images in polar coordinates is
important for facilitating the description of local image
regions in terms of their radial and tangential character-
istics. It also facilitates a number of other detection steps,
such as contour initialization and the smoothing of the
obtained contour. For this purpose, each of the original
IVUS images is transformed to a polar coordinate image
where columns and rows correspond to angle and dis-
tance from the center of the catheter, respectively, and
this image alone, denoted I(r, �), is used throughout the
analysis process.

The IVUS images include not only tissue and blood
regions but also the outer boundary of the catheter itself.
The latter defines a dead zone of radius equal to that of
the catheter, where no useful information is contained.
Knowing the diameter D of the catheter, these catheter-
induced artifacts are easily removed by setting I(r, �) �
0 for r � D/2 � e, e being a small constant. This

rdinate images before (right top) and after (right bottom)
induced artifacts.
ar coo
preprocessing is illustrated in Fig. 2.
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Texture analysis. Texture has been shown to be an
important cue for the analysis of generic images (Mez-
aris et al. 2004). In this work, the discrete wavelet frames
(DWF) decomposition (Unser 1995) is used for detecting
and characterizing texture properties in the neighborhood
of each pixel. This is a method similar to the discrete
wavelet transform (DWT) that uses a filter bank to de-
compose the grayscale image to a set of subbands. The
main difference between DWT and DWF is that in the
latter the output of the filter bank is not subsampled. The
DWF approach has been shown to decrease the variabil-
ity of the estimated texture features, thus improving pixel
classification for the purpose of image segmentation. The
employed filter bank is based on the lowpass Haar filter

H�z� �
1

2�1 � z�1� (1)

Using this along with the complementary highpass filter
G(z), defined as G(z) � zH(�z�1), the fast iterative
scheme proposed in (Unser 1995) for applying the DWF
analysis in the two-dimensional space is realized. Then,
according to the DWF theory, the texture of pixel p can
be characterized by the standard deviations of all detail
components, calculated in a neighborhood F of pixel p.
The calculation of these standard deviations is denoted
by the � blocks in Fig. 3. The images resulting from
treating each calculated standard deviation as intensity
value of pixel p are denoted as Ik, k � 1, � , K. In the
proposed approach, a DWF decomposition of four levels
is employed, resulting in K � 12 such images, in addi-
tion to an approximation component, which is a low-pass
filtered image denoted ILL. However, not all of these
images are used for the localization of the contours, as
discussed in the contour initialization section below.

Contour initialization
The objective of the contour initialization procedure

is the detection of pixels that are likely to belong to the
lumen and media-adventitia boundaries, taking into con-
sideration the previously extracted texture features. Two
approaches for the initialization of the lumen contour are
considered in this work; they mainly differ in the features
that they rely on for the initialization: intensity features
and texture features, respectively.

Lumen contour initialization using intensity
information. The use of intensity information readily
available from the IVUS image I(r, �) after the prepro-
cessing stage is a common approach to contour initial-
ization, since intensity is the simplest form of informa-
tion that can be used for detecting the lumen boundary.
The lumen boundary, when travelling from the center of
the catheter towards the image borders on a radius R (i.e.

for � � const) is typically denoted by an increase of
intensity from I(r, �) � e�, e� being a small constant, to
I(r, �) � e� (e.g., Fig. 2); assuming the presence of no
artifacts (noise) in the lumen area, inequality I(r, �) � e�
should hold for all pixels belonging to the lumen area.

Consequently, the lumen contour can be initialized
as the set of pixels (Giannoglou et al. 2007):

Cint,i � �pint,i � ��, ��� (2)

for which

I��, �� � T and I�r, �� 	 T ∀ r 	 � (3)

where subscript int in eqn 2 denotes the Lumen (i.e.
“internal”) contour, subscript i denotes intensity-based
initialization and T is a threshold. This initialization
defines a lumen contour function Cint,i(�) � � (Fig. 4a).

Lumen contour initialization using texture
information. Intensity information can be used, as de-
scribed above, for the initialization of the lumen bound-
ary. However, it can be argued that there is more infor-
mation in an IVUS image than just an intensity increase
on the lumen-wall boundary that can be used for differ-
entiating between the lumen and wall areas (Papadogior-
gaki et al. 2006). More specifically, these two areas
demonstrate different texture characteristics: the lumen
area tends to be a low-intensity non-textured region, with
noise being responsible for any high-intensity artifacts in
it, whereas the wall area is typically characterized by the
presence of both low-intensity and high-intensity parts,
with changes between the two that are of relatively
low-frequency in the tangential direction and of some-
what higher frequency in the radial direction. Conse-
quently, the local energy of the signal in appropriate
frequency subbands can be used as a criterion for differ-
entiating between the lumen and wall areas; to this end,
the results of texture analysis previously discussed are
employed.

More specifically, let Iint,t denote the “image” that is
used for the detection of the lumen boundary in the case
of texture-based initialization. This is defined using the
results of texture analysis as

Iint�r, �� �
255

max�r,���Iint
’ �r, ���Iint

’ �r, �� (4)

Iint
’ �r, �� � �

k��7,8,10,11�

Ik�r, �� (5)

An example image generated using eqn. 4 can be
seen in Fig. 4(b). The choice of the images Ik (Fig. 3) that
are employed in this initialization process was done
based on visual evaluation of all K generated images and
is in line with the aforementioned observations regarding

the texture properties of the lumen and wall areas, in
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Fig. 3. Fast iterative 2D DWF decomposition of four levels. Subscripts R, C denote filters applied row-wise and

column-wise, respectively.
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combination with the characteristics of the filter bank
used for the generation of images Ik.

Using the above image data, the lumen contour is
initialized as the set of pixels

cint,t � �pint,t � ��, ��� (6)

for which

Iint,t��, �� � T and Iint,t�r, �� 	 T ∀ r 	 � (7)

thus, defining a lumen contour function Cint,t(�) � � (Fig.
4b). T is the threshold already defined for intensity-based
initialization.

Media-adventitia contour initialization. The moti-
vation behind the choice of image data to be used for the
initialization of the media-adventitia boundary lies under
the proposed approach in the observation that in many
cases the adventitia is represented in IVUS images by a
thick bright ring (a thick bright zone in polar coordi-
nates) that is dominant in the image, opposed to the
media region or any other region of an IVUS image.
Consequently, for the localization of the adventitia re-
gion, low-pass filtering could be used to suppress unde-
sirable details of the image while preserving well the
former.

Based on the above observation, the detail compo-
nent ILL of the DWF decomposition discussed in the
texture analysis section is used in this work for detecting
the media-adventitia boundary. Using this, the media-
adventitia contour is initialized as the set of pixels

cext � �pext � �
, ��� (8)

a

d

Fig. 4. Results of contour initialization for (a) the lum
information, (c) the media-adventitia boundary, and (d)

using LPF-ba
for which
ILL(
, �) � max
r ��

�ILL(r, �)�, (9)

where [�, �] are the points of the lumen contour, as
obtained by the initialization process. This defines a
contour function Cext(�) � 
 for the media-adventitia
contour (Fig. 4c).

Selecting, according to the above equations, the
pixels to which the intensity of the low-pass filtered
image is maximized serves the purpose of identifying the
most dominant low-frequency detail in the image, in case
low-pass filtering has failed to suppress all other higher-
frequency information. The selected pixels correspond to
those on the boundary between the adventitia and the
media regions.

Contour refinement
In contrast to the initial contours generated as de-

scribed in the previous section, which are not smooth and
are characterized by discontinuities (Fig. 4a, and c), the
true lumen and media-adventitia boundaries are smooth,
continuous functions of �. Consequently, in order to
obtain smooth contours that are consistent with the true
ones, the application of a filtering or approximation
procedure to the initial contour functions Cint(�), Cext(�)
is required. In this work, two different approaches are
used: one based on low-pass filtering (LPF) of the non-
smooth, non-continuous contour functions generated by
the initialization process, and one based on radial basis
function (RBF) approximation.

LPF-based contour smoothing. LPF-based contour
smoothing is a common approach, realized in this work

c

f

ing intensity information, (b) the lumen, using texture
f) the corresponding contours after contour refinement
proximation.
b

e

en, us
, (e), (
by applying a simple filtering solution that takes advan-
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tage of the filtering functionalities developed for the
purpose of texture analysis. More specifically, the low-
pass filters H(z2i

), i � 0, � , M � 1 that are based on the
low pass Haar filter (eqn. 1) are successively applied to
each of the two initial contour functions (Fig. 5). Param-
eter M controls the smoothness of the resulting contour
and was set to 7 for the purpose of this application, based
on experimentation. Results of this process are illustrated
in Fig. 4d, e and f. This simple procedure is shown to
perform acceptably in smoothing the contours; however,
better results can be obtained using a more elaborate
approximation technique such as one based on radial
basis functions, as discussed in the following section and
also shown in the Results section.

RBF-based contour approximation. Polyharmonic
radial basis functions (Carr et al. 2001) have been pro-
posed for reconstructing smooth surfaces from point-
cloud data and for repairing incomplete meshes through
interpolation methods and approximation techniques.
Under this approach, the desired smooth surface is de-
fined as the zero set of an RBF s fitted to the given initial
surface data, i.e., as the set of points x for which s(x) �
0. An RBF s is defined as a function of the following
form

s�x� � p�x� � �
i�1

N

�i��
x � xi
�, (10)

where x is a point in the two-dimensional (2D) or three-
dimensional (3D) space, depending on whether the curve
to be approximated is a 2D curve or a 3D surface, where
the RBF s is evaluated; p(x) is a low degree polynomial,
� is a real function called basic function, xi are the
centers of the RBF, �i are the RBF coefficients, and | · |
denotes here Euclidean distance measured in the polar
coordinate image. Fitting an RBF to the given initial data
refers to calculating the RBF coefficients �i and the
weights of p(x).

Various functions have been proposed for serving
as a basic function � (Carr et al. 2001). In this work, the
biharmonic spline was used:

��
x � xi
� �
x � xi
2ln�
x � xi
� (11)

The centers xi appearing in eqns. 10 and 11 above are a
subset of the points in the 2D or 3D space at which a

H(z)
initial
contour H(z2) H(z2 )

M-1 ... final
contour

Fig. 5. Illustration of the low-pass filtering-based contour
smoothing procedure.
function f has been defined. The latter represents the
initial input data that the RBF is to approximate and is
defined as discussed separately for the 2D and 3D cases
in the two following subsections.

RBF-based contour approximation in the 2D space.
The use of an RBF for the approximation of one of the
initial contours in a frame, i.e., the generation of a
contour c� that is a smooth, reasonable approximation of
c, requires the definition for each such contour of a
function f, as follows:

f��, C���� � 0 (12)

where C(�) here denotes either Cint(�) or Cext(�), depend-
ing on the contour being examined. Function f is used for
formulating the approximation problem as one of finding
an RBF s for which s(.) � f(.). To avoid the trivial
solution of s being zero at every point, f must also be
defined for a set of points not belonging to the initial
contour (off-surface points), so that

f��, r � C���� � 0 (13)

In order to avoid identifying as off-surface points at this
stage points, which potentially belong to the true contour
under examination, the former points are defined in this
work as those which satisfy the following equations:

r � max
�

�C���� � 1 (14)

r � min
�

�C���� � 1 (15)

For the above points in the 2D space, function f is defined
as the signed Euclidean distance from the initialized
contour for � � const, i.e.

f��, r � C���� � r � C��� (16)

Following the definition of f, the FastRBF library
(FarField 2001) is used to generate the smooth contour
approximation c�, as follows: First, duplicate points
where f has been defined (i.e., points in the 2D space,
which are located within a specific minimum distance
from other input points) are removed; the remaining
points serve as the centers of the RBF, xi, that were
defined in the previous section. Subsequently, the fitting
of an RBF to this data is performed using the spline
smoothing technique, chosen for not requiring the prior
estimation of the noise measure related to each input data
point, as opposed to other fitting options such error bar
fitting. Finally the fitted RBF is evaluated in order to find
the points which correspond to zero value; the latter
define the contour approximation c�. An illustrative ex-
ample of the final smooth curve generated using the
results of initialization and the off-surface points selected

according to the above procedure is shown in Fig. 6.
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RBF-based contour approximation in the 3D space.
Under the approach described in the previous section, the
RBF-based approximation was applied to each frame
independently. However, a similar process can be ap-
plied to all frames, so as to directly generate a smooth
surface in the 3D space for each of the two boundaries of
interest (i.e., lumen and media-adventitia). In the absence
of any information regarding the correct spatial localiza-
tion of each 2D plane (represented by a frame of the
IVUS image sequence) in the 3D space, each point
[Ct(�), �] belonging to the examined boundary at frame
t (t �[0, L � 1]) according to the initialization procedure
(whichever is employed) is represented in the 3D space
as [Ct(�), �, t] (the index t is introduced to C(�) here
simply to differentiate between initial contour functions
at different frames of the image sequence).

Similarly to the 2D case, function f is defined as
follows:

f��, Ct���, t� � 0 (17)

and

f��, r � Ct���, t� � r � Ct��� (18)

for the points [�, r, t] that satisfy the following equations:

r � max
�,t

�Ct���� � 1 (19)

r � min
�,t

�Ct���� � 1 (20)

Similarly with the 2D case, the FastRBF library was then
used, to generate in this case the smooth 3D contour
approximation over the whole sequence of IVUS frames.

In vivo validation of segmentation techniques

IVUS image datasets. To validate in vivo, the pro-

r

a

Fig. 6. Example of 2D RBF-based contour smoothing in
and selected off-surface points (in black), (b) final smo
posed segmentation techniques, we investigated with
IVUS 18 arterial segments (right coronary artery, RCA,
n � 7; left anterior descending, LAD, n � 5; left cir-
cumflex artery, LCx n � 6) from 10 patients randomly
selected during routine diagnostic and therapeutic inter-
ventional procedures. From this pool of IVUS images we
selected a dataset of (1) 270 IVUS images (i.e., 30
consecutive gated images per artery from 8 arteries, and
30 randomly selected images from the remaining nine
arteries) acquired with a mechanical IVUS imaging sys-
tem (ClearView, Boston Scientific, Natick, MA, USA)
using a 2.6 F, 40 MHz IVUS catheter (Atlantis SR Pro,
Boston Scientific, Natick, MA, USA) and (2) 50 IVUS
images, all from the same arterial segment, acquired with
a solid-state electronic IVUS imaging system (Volcano
Therapeutics Inc., Rancho Cordova, CA, USA) using a
2.9F, 20 MHz IVUS catheter. In the mechanical imaging
system a motorized pullback device was used to with-
draw the IVUS catheter at a constant speed of 0.5 mm/s.
The ultrasound data was recorded in a 0.5-inch S-VHS
videotape. The S-VHS data was digitized at 512 � 512
pixels with 8-bit grey-scale in a rate of 7.5 images/s and
the end-diastolic images were selected (peak of R-wave
on ECG) (Giannoglou et al. 2006a). In the solid-state
imaging system, the ultrasound data were digitally re-
corded in DICOM along with the ECG, which was used
for the selection of end-diastolic images (peak of R-wave
on ECG). The Institutional Medical Ethics Committee
approved the study and all patients gave written in-
formed consent.

Method comparison study. Each of these images
was segmented manually by an experienced expert and
automatically with each of the six possible combinations
of the two lumen contour initialization approaches (in-
tensity-based and texture-based) and the three contour
refinement approaches (LPF, 2D RBF and 3D RBF-
based) presented in the Materials and Methods section.

b

representation: (a) contour initialization results (in blue)
ntour generated by 2D RBF-based contour smoothing.
r

polar
The inter-observer and intra-observer agreement of man-
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a

b

Fig. 7. Bland-Altman and linear regression plots of the differences between automated and manual segmentation, when
(a) intensity-based, (b) texture-based lumen contour initialization, and LPF-based contour refinement are used for the
automated contour detection; LCSA � lumen cross-sectional area, VSCA � vessel cross-sectional area, WCSA � wall
cross-sectional area.
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a

b

Fig. 8. Bland-Altman and linear regression plots of the differences between automated and manual tracings, when (a)
intensity-based, (b) texture-based lumen contour initialization and 2D RBF-based contour refinement are used for the
automated contour detection; LCSA � lumen cross-sectional area, VSCA � vessel cross-sectional area, WCSA � wall
cross-sectional area.
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a

b

Fig. 9. Bland-Altman and linear regression plots of the differences between automated and manual tracings, when (a)
intensity-based, (b) texture-based lumen contour initialization and 3D RBF-based contour refinement are used for the
automated contour detection; LCSA � lumen cross-sectional area, VSCA � vessel cross-sectional area, WCSA � wall
cross-sectional area.
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ual segmentation was previously tested and found to be
extremely high (Giannoglou et al. 2007).

For this comparison, three morphometric parame-
ters were calculated in each IVUS image: these were the
lumen cross-sectional area-LCSA, vessel cross-sectional
area-VCSA and wall area-cross-sectional WCSA, (Fig.
1). The values of these parameters in the manually seg-
mented images were used as reference.

For the temporal evaluation of the automated seg-
mentation versus the manual reference, the mean dura-
tion per frame of manual and automated segmentation
were also calculated and compared.

ba

e f

Fig. 10. Experimental results from a representative im
original image, (b) manually segmented image, (c) te
initialization, 2D RBF smoothing, (e) texture-based initi
LPF smoothing, (g) intensity-based initialization, 2D R

Table 1. Mean difference between automatic and manually-
generated results and corresponding standard deviation for
three IVUS evaluation parameters, for the images acquired

with the mechanical IVUS imaging system

Parameter/
Method

Lumen area
(LCSA) (mm2)

Vessel area
(VCSA) (mm2)

Wall area
(WCSA) (mm2)

Intensity, LPF 0.298 � 1.685 0.094 � 2.01 �0.203 � 1.75
Texture, LPF 0.169 � 1.337 0.196 � 1.679 0.027 � 1.528
Intensity, 2D

RBF 0.362 � 1.505 �0.063 � 1.704 �0.425 � 1.586
Texture, 2D

RBF 0.127 � 1.209 0.059 � 1.589 �0.067 � 1.363
Intensity, 3D

RBF 0.273 � 1.619 �0.935 � 2.112 �1.181 � 1.681
Texture, 3D

RBF �0.115 � 1.735 �0.726 � 2.046 �0.611 � 1.798
smoothin
Statistical analysis. The statistical analysis of the
results expressed by the parameters was performed with
the statistical package SPSS 12.0 (SPSS Inc., Chicago,
IL, USA). For the method comparison study, Bland-
Altman analysis, and linear regression analysis were
applied. P � 0.05 was considered as the level of
significance.

RESULTS

Results of automated versus manual segmentation
The differences between automated and manual

tracings, for the images acquired with the mechanical
IVUS system “Boston Scientific”, are presented in Figs.
7 to 9 (Bland-Altman and linear regression plots) and
Table 1 (Md � SD, i.e., mean and standard deviation of
the differences between automated and manual tracings).
These results reveal the improved overall performance of
the approach that uses texture features for lumen bound-
ary initialization and 2D RBFs for contour approxima-
tion, compared with the other combinations of initializa-
tion and contour smoothing techniques considered in this
work. Also, in this approach, as depicted in the corre-
sponding plots, the vast majority of differences were
distributed within the limits of agreement (i.e., Md �
2SD), suggesting a high level of agreement between
manual and automated segmentation. In addition, linear
regression analysis revealed that the results of texture 2D
RBF-based automated segmentation were strongly cor-

dc

g h

quired with the mechanical IVUS imaging system (a)
ased initialization, LPF smoothing, (d) texture-based
n, 3D RBF smoothing, (f) intensity-based initialization,
oothing and (h) intensity-based initialization, 3D RBF
age ac
xture-b
alizatio
BF sm
g.
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related with the reference manual segmentation, yielding
slopes close to 1 and intercepts close to 0 for all the
examined morphometric parameters (Figs. 7 to 9).

Indicative results of the different combinations of
the proposed methods for one image are shown in Fig.
10, where the superiority of texture-based contour ini-

Manual Automated
calcification

BranchionCalcificationGuidewire  artifact

Guidewire    artifact

Fig. 11. Experimental results for different images of the
and RBF-based approximation, shown on the second an

manually generated by medical expert
tialization versus the intensity-based one is demonstrated
(e.g., see the lumen contours in Fig. 10(c) and (d) and
compare them with those in (f) and (g), respectively), as
well as the superiority of RBF-based contour smoothing
versus the LPF-based one (for example, compare the
lumen contours in Fig. 10c and d). In Fig. 11, additional
indicative results are shown for the combination of tex-

Manual Automated

Branch

Calcification

Branch

Calcification

sed approach using texture-based contour initialization
h column, and comparison with corresponding contours
e first and third column accordingly.
propo
d fourt
ture-based initialization and RBF-based approximation,
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that is shown to outperform the other approaches con-
sidered in this work. These results demonstrate the suit-
ability of the proposed approach for segmenting hetero-
geneous IVUS images including images, which contain
branches, calcified areas and guidewire artifacts.

With respect to the 3D RBF-based contour refine-
ment approach, it is seen from the comparative evalua-
tion results reported in Table 1 that this, regardless of the
employed initialization procedure, generally results in a
higher error than the corresponding 2D approach. This
outcome was actually expected and is caused by the fact
that, in the absence of any information regarding the
correct localization of each IVUS frame in the 3D space,
all vessel frames are placed sequentially in a straight line,
assuming that this does not deviate significantly from the
real three dimensional vessel geometry. This, however,
results in the construction of a straight artery in the 3D
space, whose morphology is likely to be quite different
than the real one. Under the above restrictive assump-
tion, the information from previous and next frames that
is exploited during contour refinement is likely to be
incorrect and the effect of this is often seen as a displace-
ment of the detected boundaries in the 2D plane, as
compared to the true ones (Fig. 12). Cardiac motion is
another factor contributing to the difficulty in exploiting
information available from previous and next frames for
the accurate contour refinement in any given frame. The
above results justify the choice of performing contour
initialization in every IVUS image independently, de-
spite the fact that the proposed initialization processes
could easily be modified to take into account the result in
the previous frame as well.

Results of statistical analysis of the differences be-
tween automated and manual tracings, for the images
acquired with the solid-state IVUS system “Volcano”,
are presented in Table 2 (Md � SD, i.e., mean and
standard deviation of the differences between automated

a

Fig. 12. (a) Original IVUS image manually segmented, (
RBF-based refinement and (c) segmentation by texture-b
displacement of the contours, due to failure of the simple
and manual tracings). Indicative results of the different
combinations of the proposed methods for one image of
this set are shown in Fig. 13. These results support the
conclusions drawn from the results presented above for
the images acquired with the mechanical IVUS system
“Boston Scientific” and highlight the possibility of ap-
plying the techniques discussed in this work in combi-
nation with different image acquisition systems.

Finally, in Table 3, the average execution time per
frame for the contour initialization and approximation
approaches proposed in this work are reported; these
were recorded on a 3 Ghz PC with 1 GB RAM. For
initialization, since texture analysis is in any case re-
quired for the initialization of the media-adventitia con-
tour, the execution time varies very little with respect to
the lumen contour initialization approach that is fol-
lowed. As can be seen from Table 3, the proposed
approaches require relatively limited processing time and
consequently their time efficiency is not prohibitive for
their use in a clinical environment, after appropriate
optimization of the code with respect to computational
efficiency.

c

entation by texture-based contour initialization and 2D
ontour initialization and 3D RBF-based refinement. The
ptions made for the 3D geometry of the vessel, is evident

Table 2. Mean difference between automatic and manually-
generated results and corresponding standard deviation for
three IVUS evaluation parameters, for the images acquired

with the solid-state IVUS imaging system

Parameter/
Method

Lumen area
(LCSA) (mm2)

Vessel area
(VCSA) (mm2)

Wall area
(WCSA) (mm2)

Intensity, LPF 0.312 � 0.552 0.053 � 0.596 �0.258 � 0.784
Texture, LPF 0.101 � 0.381 �0.098 � 0.577 �0.208 � 0.695
Intensity, 2D

RBF 0.115 � 0.410 �0.088 � 0.415 �0.183 � 0.525
Texture, 2D

RBF 0.092 � 0.345 �0.047 � 0.338 �0.140 � 0.408
Intensity, 3D

RBF �0.285 � 0.551 �0.749 � 1.190 �0.463 � 0.895
Texture, 3D
b

b) segm
ased c
assum
RBF �0.276 � 0.468 �0.571 � 1.081 �0.295 � 0.970
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DISCUSSION

In this article, an automated approach for the detec-
tion of lumen and media-adventitia boundaries in IVUS
images is presented, based on the results of texture
analysis and the use of RBFs. The proposed approach
does not require manual initialization of the contours,
which is a common requirement of several other prior
approaches to IVUS image segmentation. The experi-
ments conducted with the various combinations of con-
tour initialization and contour refinement methods pro-
posed in this work demonstrated the usefulness of the
employed texture features for IVUS image analysis as
well as the contribution of the approximation technique
based on radial basis functions to the overall analysis
outcome. The comparative evaluation of the different
examined approaches revealed that use of the texture
based initialization and the 2D RBF-based approxima-
tion results in a reliable and quick IVUS segmentation,
comparable to the manual segmentation.

Our automated segmentation algorithm has several
clinical applications. It could facilitate plaque morpho-
metric analysis i.e., planimetric, volumetric and wall
thickness calculations, contributing to rapid, and poten-
tially on-site, decision-making. Similarly, our method
could be utilized for the evaluation of plaque progression
or regression in serial studies investigating the effect of
drugs in atherosclerosis. We and others developed and

a b

e f

Fig. 13. Experimental results acquired with the solid-s
segmented image, (c) texture-based initialization, LPF s
(e) texture-based initialization, 3D RBF smoothing, (f) in

initialization, 2D RBF smoothing and (h) i
validated an in vivo IVUS and biplane angiography fu-
sion technique for the geometrically correct 3D recon-
struction of human coronary arteries (Giannoglou et al.
2006a, 2006b; Slager et al. 2000, Chatzizisis et al. 2006;
Coskun et al. 2003). This technique is coupled with
computational fluid dynamics permitting the investiga-
tion of the role of local hemodynamic factors (e.g.,
endothelial shear stress, tensile stress) (Stone et al. 2003,
Chatzizisis et al. 2007a, 2007b, 2008) and local geomet-
ric parameters (e.g., vessel curvature) (Krams et al.
1997) at certain points along the coronary lumen, on
atherosclerosis development and on arterial remodeling.

c d

g h

US imaging system. (a) Original image, (b) manually
ng, (d) texture-based initialization, 2D RBF smoothing,
-based initialization, LPF smoothing, (g) intensity-based
y-based initialization, 3D RBF smoothing.

Table 3. Average execution times for contour initialization
and approximation processes for the dataset of IVUS mages

acquired with the mechanical system

Process
Average execution
time (per frame)

Contour initialization for both lumen and
media-adventitia, using intensity
approach for the former 1.81 s (using C code)

Contour initialization for both lumen and
media-adventitia, using texture
approach for the former 1.82 s (using C code)

LPF-based approximation for both lumen
and media-adventitia 1.24 s (using C code)

2D RBF-based approximation for both
lumen and media-adventitia 14.09 s (using Matlab)

3D RBF-based approximation for both
lumen and media-adventitia 14.86 s (using Matlab)
tate IV
moothi
tensity
Manual segmentation 85.8 s
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The reliable and quick IVUS segmentation constitutes
the foundation for the implementation of the above men-
tioned reconstruction technique, and the proposed IVUS
segmentation method provides this potential.

With respect to the algorithms limitations, it should
be noted that the algorithm was not tested with either
stents or thrombus in the images. When considering
relatively small calcifications, there were no noticeable
differences in the algorithm’s performance on calcified
segments compared with non-calcified segments. When
considering larger calcifications, the initialization pro-
cess for the media-adventitia contour was susceptible to
errors; in several images, however, this was corrected by
the subsequent contour approximation process. Regard-
ing the applicability of the proposed approach to images
acquired with the use of different catheters and image
acquisition systems, our experiments revealed that this is
high. However, it may require the experimental re-ad-
justment of threshold T that is introduced in the lumen
contour initialization process. This could possibly be
alleviated by further preprocessing of the images, aiming
to suppress differences (e.g., in luminance distribution)
that may be introduced by the different catheters, due to
inter-catheter variability, or the different acquisition sys-
tems.

Future work includes the combination of IVUS im-
age data with a coronary angiography, which will allow
the exploitation of information regarding the correct 3D
morphology of the vessel, both for the initialization
procedure and for the RBF-based contour refinement; the
former could also benefit from such an approach, pro-
viding that it is extended accordingly. The combined use
of texture, intensity and possibly additional information
for the initialization step, and the integration of the
developed automated analysis methodology to a com-
puter aided diagnosis tool that will also support manual
intervention of the medical expert also belong to future
work.
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