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Abstract

Several epidemiological studies have reported that an elevated heart rate is associated with coronary atherosclerosis independently of
other risk factors. In this review we explore the pathophysiologic mechanisms involved in the pro-atherosclerotic effect of elevated heart rate,
apart from its association with sympathetic tone. An elevated heart rate enhances the magnitude and frequency of the tensile stress imposed
on the arterial wall and prolongs the exposure of coronary endothelium to the systolic low and oscillatory shear stress. Moreover, increased
heart rate intensifies the pulsatile motion of the heart and, therefore, the frequency of the periodically changing geometry of the coronary
arteries, thereby affecting the local hemodynamic environment. All these processes induce structural and functional changes of the
endothelial cells, which are accumulated over the time in atherosclerosis-prone regions promoting atherosclerosis. Heart rate should be
considered in every patient with coronary heart disease, especially since it is an easily measurable and reproducible parameter. Slowing the
heart rate could potentially decrease the progression of atherosclerosis by reducing the local pro-atherosclerotic vascular environment. This
effect may be involved in any beneficial role of heart rate lowering agents in preventing coronary heart disease.
© 2007 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Epidemiological evidence shows that elevated heart rate
is associated with increased cardiovascular morbidity and
mortality, an association that has been mostly attributed to
the underlying sympathetic overactivity [1–14]. The sympa-
thetic nervous system plays a key role in the pathogenesis of
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atherosclerosis probably through induction of several
hemodynamic (e.g. tachycardia, hypertension, increased
blood viscosity) and metabolic (e.g. hyperinsulinemia,
hyperglycemia, dyslipidemia, obesity) changes. Several
large clinical studies have shown that high heart rate,
is associated with atherosclerosis and cardiovascular mor-
bidity and mortality, independently of other risk factors,
such as age, gender, hypertension, hyperlipidemia, and
diabetes [1,5,6,13,15,16] (Fig. 1). Experimental studies in
animal models of atherosclerosis also demonstrated that high
heart rate is associated with coronary and carotid athero-
sclerosis [17]. Monkeys with higher heart rates had more
extensive coronary atherosclerosis than those with lower heart
rate [18,19], whereas experimental lowering of heart rate
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Fig. 1. Survival probability curves for all-cause and cardiovascular mortality in men and women across the entire heart rate spectrum. P values were obtained
after adjustment for age, systolic blood pressure, diastolic blood pressure, cholesterol, body mass index, tobacco consumption, physical activity, antihypertensive
treatment, and history of myocardial infarction. In men, high heart rate was associated with all-cause and cardiovascular mortality, whereas in women, this
association was observed only for all-cause mortality (reprinted from [10]).

Fig. 2. The major hemodynamic forces include flow-derived shear stress (SS)
and blood pressure-induced tensile stress (TS) imposed tangentially and
circumferentially, respectively, on the arterial wall (P=blood pressure, r=lumen
radius, t=wall thickness, dv/ds=shear rate at the wall, μ=blood viscosity).
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with propranolol [20] or sinus node ablation [21,22] reduced
coronary or carotid atherosclerosis. In normotensive and
spontaneously hypertensive rats, chronic heart rate reduction
by ivabradine, a selective heart rate lowering agent, induced
a significant decrease in thoracic aorta wall thickness,
supporting the association of elevated heart rate with
atherosclerosis [23].

In this review we explore the underlying mechanisms
implicating high heart rate in atherosclerosis— independently
of its association with sympathetic overactivity. We also
consider the anti-atherogenic effect of heart rate lowering.
Although the review focuses on the coronary vasculature
similar mechanisms probably apply to the entire arterial bed.

2. Basics of coronary hemodynamics

2.1. Definition of shear stress and tensile stress

Histopathology combined with flow simulations, as well as
in vivo animal and human studies have shown that athero-
sclerotic lesions are preferentially located in the vicinity of
branch points, the outer wall of bifurcations and the inner wall
ofmajor curvatures [24–27]. Local hemodynamic forces play a
unique role in predisposing some arterial areas to athero-
sclerosis [28–34]; these forces include flow-generated shear
stress (SS) and blood pressure-derived tensile stress (TS)
(Fig. 2). SS is the tangential force derived by the friction of the
flowing blood on the endothelial surface and is defined as the



Fig. 3. A. The coronary vasculature is divided into three distinct territories, namely subendocardial, subepicardial and epicardial. In each of these territories a
distinct flow pattern occurs. B. Phasic variation of coronary flow and shear stress (SS) during the cardiac cycle. In systole a retrograde flow (left black arrow)
occurs in subendocardial arteries accompanied by decrease in their diameter. Contrary to subendocardial portions, the subepicardial and epicardial segments are
dilated resulting in a slow systolic anterograde flow (dotted lines indicate the end-diastolic diameter of the epicardial coronary segments before their dilation in
systole). In diastole, the flow in the entire coronary tree accelerates (right black arrow). As a result of these phasic changes, SS in epicardial coronaries
experiences a low and oscillatory pattern during systole, and increases in diastole.

Fig. 4. Phasic variation of blood flow, shear stress (SS) and curvature in
epicardial coronary arteries during the cardiac cycle [35]. In systole the
vessel exhibits maximum curvature, while flow and SS experiencing low
values. In diastole, the vessel curvature declines, whereas flow accelerates
resulting in higher SS values.
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product of blood viscosity (μ) and shear rate at the wall (dv/ds).
The shear rate represents how fast the blood flow velocity
changes when moving from the vessel wall towards the centre
of the lumen.

TS, also known as circumferential stress, constitutes the
blood pressure-derived force imposed circumferentially on
the arterial wall [33]. Its magnitude can be approximated by
the equation T=(P⁎ r)/t, where P is the blood pressure, r is
the lumen radius and t is the wall thickness.

2.2. Coronary blood flow

The major determinants of coronary flow are the compres-
sive resistance of the ventricular myocardium and the driving
pressure (i.e. the difference between aortic and intraventri-
cular pressure) [35]. These forces create forward and back-
ward compression waves (“pushing” effect) and expansion
waves (“pulling” effect), which interplay with each other and
determine the direction of flow at each time-point of the
cardiac cycle [36,37] (Figs. 3 and 4).

In systole, the subendocardial arteries, especially in the
left coronary system, experience a retrograde flow due to
myocardial compression [38–45]. Unlike subendocardial
arteries, the subepicardial and epicardial segments are mainly
characterized by a slow systolic anterograde flow [39].
Although it would be anticipated that during systole the
backward flow derived by the collapsed subendocardial
vessels would induce a retrograde flow in subepicardial and
epicardial arteries as well, actually, this retrograde flow is
concealed by the high capacitance of the extramural
epicardial arteries, which are dilated due to their elastic
properties [41]. Forward compression waves derived by the
increased aortic pressure also contribute to systolic forward
epicardial flow [36,37]. However, a small component of
backward flow may occur, especially at the onset of systole,
making the systolic flow in the coronary arteries more
complex than in other vascular beds [37].

In diastole, as the ventricular myocardium relaxes, the
compressive impediment in intramyocardial arteries resolves,
and the dilated extramural segments discharge the stored
blood through the microcirculation, resulting in a forward and
accelerated flow in the entire coronary arterial bed tomaintain
myocardial perfusion [36,37].

2.3. SS and TS variation over the cardiac cycle

The pulsatile nature of the coronary blood flow in
combination with the blood's rheological properties and the



Fig. 5. In straight arterial segments pulsatile shear stress (SS) occurs, whereas in geometrically irregular regions, where secondary flows develop (i.e. flow
separation, recirculation and reattachment to forward flow), SS acquires a low and oscillatory pattern.
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complex geometric configuration of the coronary arteries
determines the SS patterns, which are characterized by
direction and magnitude [28] (Fig. 5). In relatively straight
arterial segments, SS is pulsatile and unidirectional with a
magnitude that varies within a range of 15–70 dyn/cm2 over
the cardiac cycle and yields a positive time-average.

In contrast, in geometrically irregular regions, where
disturbed laminar flow occurs, pulsatile flow generates low
and/or oscillatory SS. Low SS refers to SS which is unidi-
rectional at any given point with a fluctuating magnitude
during the cardiac cycle that results in a significantly low
time-average (b10–12 dyn/cm2). Low SS typically occurs at
the inner areas of curvatures, as well as upstream of stenoses.

Oscillatory SS is characterized by significant changes in
both direction (i.e. it is bidirectional) and magnitude between
systole and diastole, resulting in a very low time-average,
usually close to zero. Oscillatory SS occurs primarily at the
lateral walls of bifurcations, in the vicinity of branch points
and downstream of stenoses.

Similarly to SS, following periodic changes in blood
pressure, TS undergoes phasic variation over the cardiac
cycle between a systolic maximum and a diastolic minimum.

3. Local hemodynamic environment and atherosclerosis

Endothelial cells are capable of sensing the local hemody-
namic conditions, transducing them into biochemical signals,
ultimately shifting endothelial gene expression, and phenotype
to a pro-atherosclerotic state. This process is called mechan-
otransduction and has been extensively reviewed elsewhere
[28,46–50].

Low SS stimulates specific mechanosensors located on the
surface of endothelial cells, such as membrane integrins, ion
channels, tyrosine kinase receptors, caveolae and G-proteins to
convert SS stimuli into biochemical signals. These signals
activate multiple downstream signaling cascades, thereby
activating several transcription factors, such as nuclear factor-
kappa B (ΝF-κΒ) and activator protein-1 (AP-1). Binding of
these factors to shear stress responsive elements (SSREs) of the
endothelial DNA upregulates numerous pro-atherogenic
genes, while downregulating the expression of several
atheroprotective genes [51], Ultimately low SS promotes
reduced nitric oxide (NO) synthesis and increased NO
degradation [52–54], increased LDL uptake [55], generation
of reactive oxygen species (ROS) [56], expression of adhesion
molecules [e.g. vascular cell adhesion molecule-1 (VCAM-1),
intercellular adhesion molecule-1 (ICAM-1)], chemoattrac-
tants [e.g. monocyte chemoattractant protein-1 (MCP-1)] and
cytokines [e.g. tumor necrosis factor-α (TNF-α), interleukin-6
(IL-6)] [57], and secretion of pro-thrombotic molecules [46].
In addition to functional changes, low SS affects the endo-
thelial cytoskeleton provoking permanent structural changes of
endothelial cells [58]. These structural changes in combination
with endothelial cell apoptosis, which is also promoted by
low SS [28,59], make the endothelium more permeable
to circulating LDL and inflammatory cells (e.g. monocytes,
T-lymphocytes, mast-cells) [50,60,61]. Blood stagnation that
occurs in low blood flow regions further facilitates the
infiltration of LDL and inflammatory cells into the intima [62].

An increased TS is sensed by several mechanoreceptors
such as integrins, stretch-sensitive ion channels, tyrosine
kinase receptors and G-proteins, which in turn trigger a
downstream cascade of signaling molecules resulting in the
activation of NF-κB or AP-1 [48,63–67]. These transcription
factors in turn are associated with certain strain-sensitive
elements located at the promoter regions of several pro-
atherogenic genes, thereby upregulating them. Such genes
encode potent vasoconstrictors [e.g. endothelin-1 (ET-1)] [63],
adhesion molecules (e.g. VCAM-1, ICAM-1), chemoattrac-
tants (e.g. MCP-1), and cytokines (e.g. TNF-α, IL-6) [68],
oxidative enzymes, such as nicotinamide adenine dinucleotide
phosphate oxidase (NADPH) and xanthine oxidase [69],
growth promoting factors [e.g. platelet derived growth factor,
(PDGF)], and matrix degrading enzymes [e.g. matrix metallo-
proteinases (MMPs)] [70]. Elevated TS was also proposed to
induce direct endothelial injury thereby increasing the
endothelial permeability to LDL and circulating inflammatory
mediators [71,72].
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4. Mechanisms responsible for the pro-atherosclerotic
effect of high heart rate

4.1. Increased magnitude and frequency of the mechanical
load imposed on the arterial wall

Mean blood pressure is given by the equation Blood
Pressure=(Stroke Volume×Heart Rate)×Peripheral Resis-
tances, in which the product of stroke volume and heart rate
corresponds to the cardiac output [35]. Blood pressure does
not change linearly in relation to heart rate for the entire
spectrum of heart rate values. At rates above 120 beats per
min (bpm), the stroke volume reduces due to the shortening
of the diastolic phase, thereby reducing the cardiac output.
However, for moderate tachycardia or even for resting heart
rate close to 100 bpm, the moderately increased heart rate
compensates for the reduced stroke volume, resulting in a
positive gain of the cardiac output and accordingly in an
increase of blood pressure and TS. Increased magnitude of
TS imposed on the wall, upregulates the expression of pro-
atherosclerotic genes by the endothelial cells [73] (Fig. 6). In
keeping with that Bassiouny et al. [74] used the term stress
index, defined as the product of mean blood pressure and
heart rate, in order to study the effect of the increased
mechanical load on atherosclerosis in the infrarenal aorta and
iliac arteries of monkeys. A strong positive correlation
between high stress index and was found revealing the
importance of this parameter that encompasses the synergis-
tic effect of high heart rate and hypertension on the formation
of atherosclerotic plaque. This observation was further
supported by other studies in which psychosocial stress
induced endothelial injury and subsequent atherosclerotic
lesion formation in coronary arteries of monkeys, an effect
that was modulated through β1-receptor activation [75,76].
Fig. 6. Overview of the potential pathogenetic mechanisms, by which high heart pro
of the imposed on the wall mechanical load (i.e. hypertension, tensile stress). Also, d
total time spent on systoles per minute, thereby prolonging the exposure of endothel
elevated heart rate intensifies the pulsatile motion of the heart, thereby increasing th
arteries. This effect reinforces the periodic variations of tensile stress and shear s
intensified low and oscillatory shear stress induce vascular smooth muscle cell gro
these processes confer a predisposition to atherosclerosis.
In addition to the increased magnitude of the mechanical
load, the frequency of this load, a factor that is greatly
determined by heart rate, appears to play a central role in the
pathophysiology of coronary atherosclerosis [71] (Fig. 6).
As mentioned, TS undergoes significant temporal fluctua-
tions over the cardiac cycle between a systolic maximum and
a diastolic minimum. Conceivably, an elevated heart rate
could increase the frequency of these fluctuations, thereby
exerting an intensive stress (“fatigue effect”) on the
endothelium, ultimately leading to endothelial dysfunction
[71]. However, the pathophysiologic mechanisms respon-
sible for high heart rate-induced cumulative endothelial
injury need to be further elucidated with more analytical
experimental studies.

4.2. High heart rate prolongs the exposure of endothelium
to low and oscillatory SS

By applying sophisticated Computational Fluid
Dynamics in realistic arterial models, we and others showed
that SS attains a low and oscillatory pattern during systole,
whereas in diastole it exhibits an initial steep increment up to
its diastolic maximum, and then it slowly declines through-
out the rest of diastolic phase until the initiation of the next
systole [62,77–80] (Fig. 4). Given the involvement of low
and oscillatory SS in atherosclerosis, one could speculate
that the systolic period favors the pathophysiological
processes responsible for the onset and development of
atherosclerosis [77], whereas the steep increase of SS,
appearing in diastole, modulates an atheroprotective milieu,
compensating for the atherogenic systolic SS values (Fig. 6).
Under resting conditions (i.e. 60–80 bpm), in a typical
cardiac cycle of 1000 ms, 700 ms correspond to diastole and
the rest 300 ms to systole (i.e. diastole vs. systole duration
motes atherosclerosis. High heart rate increases the magnitude and frequency
ue to the relative shortening of the diastolic time high heart rate increases the
ium to the atherogenic effect of low and oscillatory shear stress. Furthermore,
e frequency of the periodically changing geometry of the epicardial coronary
tress over the cardiac cycle. The enhanced mechanical load, as well as the
wth and collagen deposition, resulting in vascular stiffening. Ultimately, all



Fig. 7. Conceptual mechanism for the atherogenic effect of high heart rate: In low heart rate diastole lasts longer than systole, compensating for the pro-
atherogenic effect of systolic low shear stress. As the heart rate increases diastole undergoes shortening and the total time spent on systoles per minute relatively
to diastole increases; thus in regions susceptible to atherosclerosis the endothelium is exposed to the atherogenic effects of systolic low SS for longer periods.
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ratio 2:1) [35]; therefore as diastole lasts longer than systole,
it compensates for the systolic low SS values (Fig. 7).
However, as the heart rate increases, the diastolic time
gradually decreases, resulting in an increase of the total time
spent on systoles per minute relatively to diastole; of note in
severe tachycardia the duration of diastole may even become
equal to that of systole [74,77]. As a result, in regions
susceptible to atherosclerosis high heart rate attenuates the
atheroprotective effect of diastole, exposing the endothelium
to the atherogenic effect of the systolic low and oscillatory
SS for longer periods.

4.3. High heart rate induces wall stiffness

Another potential mechanism implicating high heart rate
in atherosclerosis involves the induction of coronary wall
stiffness [15] (Fig. 6). It was shown that experimental
tachycardia instigates wall stiffness in the coronary arteries
and femoral arteries of rats [81]. An association between
high heart rate (N80 bpm) and stiffness of aorta or large
peripheral arteries has also been demonstrated in studies
performed in humans [82–84]. This effect was attributed to
the elevated mechanical load, which was found to increase
arterial wall viscosity, making the arteries stiffer [85].
However, whether the heart rate-dependent stiffening effect
occurs in the coronary arteries remains elusive.

Physiologically, the epicardial arteries are elastic-type
conduit arteries containing collagen and elastin in their wall
[86]. Collagen provides integrity and tensile strength to the
wall, whereas elastin regulates vascular elasticity. Both
proteins determine the ability of the arteries to distend, so-
called compliance. Under normal conditions, the relative
content of collagen and elastin remains stable through a
dynamic and constant process of synthesis and breakdown,
thereby maintaining a normal wall compliance. Low and
oscillatory SS, as well as phasic TS, which are both enhanced
by the elevated heart rate, constitute potent stimuli for
vascular smooth muscle cells to grow, migrate from the
media to intima, proliferate and secrete MMPs. These
endopeptidases impair the established balance between
collagen and elastin, progressively contributing to vascular
stiffness. It could be hypothesized that since the stiff
atherosclerotic epicardial arteries lose their elastic properties
their ability to absorb the retrograde flow derived from the
collapsed subendocardial segments during systole is limited
[87]. As a result, a systolic retrograde flow could occur in the
epicardial segments (not only in the subendocardial ones),
followed by a diastolic anterograde flow, resulting in a more
intense temporal SS and TS variation over the time, which
may further promote the atherosclerotic process.

4.4. High heart rate amplifies phasic geometric changes of
coronary arteries

The coronary arteries are considered as the most
susceptible vessels to atherosclerosis in the entire human
vasculature due to their complex three-dimensional geometry
in combination with the dynamic changes that this geometry
undergoes during the cardiac cycle [88]. The epicardial
segments of coronary arteries are closely attached to the
beating heart and as a result they sustain two main types of
phasic motion: (a) the periodically changing curvature which
represents the changing bending of the coronary arteries
during the cardiac cycle and (b) the periodically changing
torsion, which refers to the changing twisting of the coronary
arteries during the cardiac cycle [89]. It was demonstrated that
the pulsatilemotion of the heart affects the coronary geometry,
and this in turn influences the local hemodynamic environ-
ment, initiating a self-perpetuating vicious cycle [90,91].
Human in vivo data revealed that the average curvature of the
left anterior descending artery exhibits its highest values in
systole, whereas relatively low and constant curvature occurs
in diastole [89] (Fig. 4). By applying this pattern of
periodically changing curvature on the left anterior descend-
ing artery it was demonstrated that in areas with high
curvature low SS occurs at systole, whereas the same areas
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experience higher SS values in diastole, possibly due to the
fact that the coronary artery exhibits lesser curvature. This
observation implies that the increased curvature may create a
local low SS environment, thereby promoting atherosclerosis.

Also, periodically changing torsion has been proposed as
a potential modulator of the local hemodynamic environ-
ment [87]. A human autopsy study demonstrated that
angiographically diseased coronary artery portions experi-
ence significantly higher torsion compared to normal
segments, suggesting that there may be an association
between high torsion and the development of atherosclerosis
[92]. Significant SS oscillations were also found in arterial
segments exhibiting intense phasic changes in torsion [91].

In addition to the effect of changing coronary geometry
on SS, the coronary motion during the cardiac cycle could
augment the phasic TS variations [87,93].

Taking the aforementioned observations into account, it
could be hypothesized that phasic changes of coronary
geometry instigate a periodic fluctuation of the imposed on
the arterial wall hemodynamic stresses, accentuating the
local atherogenic environment. In this setting, an increased
heart rate could increase the frequency of phasic changing
coronary geometry [92], which in turn could augment the
phasic SS and TS variations, ultimately accelerating the
atherosclerotic process (Fig. 6).

5. Involvement of high heart rate in the natural history
of atherosclerosis

Beside the implication of high heart rate in atherogenesis
and early atherosclerosis, its role throughout the natural
history of atherosclerosis, culminating to the formation of
vulnerable atherosclerotic plaque prone to rupture, is also
critical. Once an atherosclerotic plaque acquires character-
istics of vulnerability it encounters several biomechanical
factors (e.g. increased TS, low and oscillatory SS, radial
compression, longitudinal bending, circumferential bend-
ing), which are generated mostly by the pulsatile nature of
the blood flow, blood pressure and heart motion [94]. As the
elevated heart rate accentuates blood flow, blood pressure
and heart motion, it may promote and expedite the
weakening of the fibrous cap, ultimately increasing the risk
of plaque disruption and the onset of an acute coronary
syndrome. This perspective is supported by an angiographic
6-months follow-up human study, which showed that high
heart rate (N80 bpm) facilitates coronary plaque disruption;
an effect, which could be prevented by beta-blockers [95].

6. Clinical perspectives

6.1. High heat rate: a new independent risk factor for
atherosclerosis and cardiovascular mortality?

To date, the impact of raised heart rate in atherosclerosis
has been underestimated; increased heart rate has been
considered as a secondary effect of sympathetic over-
stimulation rather than an independent risk factor. Given
that the underlying mechanisms for the vulnerability to
develop atherosclerosis are still elusive since only about half
of its causality is credited to established risk factors [88], the
European Society of Hypertension Consensus Meeting
recently suggested the inclusion of high heart rate — an
easily measured, quite reproducible and modifiable factor—
into the list of risk factors. Of note, it was proposed that the
heart rate could be used for the stratification of the risk for
development of future atherosclerosis [3,96].

6.2. Should the upper and lower normal limits of heart rate
be revisited?

The absence of a standard widely accepted way to
measure heart rate increases the uncertainty regarding the
normal and pathologic range of this parameter. Resting
(normal) heart rate is a generalized term encompassing a
broad spectrum of heart rate values, between 60 and
100 bpm, which have been established on the basis of
previous epidemiological and statistical evidence. However,
the dynamic and changing nature of epidemiological data
dictates the dynamic nature of the reference intervals. For
example, although traditionally the threshold for systolic and
diastolic hypertension has been set to 140 mmHg and
90 mmHg, respectively, new epidemiological evidence
raised the need for these limits to be reconsidered. In this
context, new terms, such as borderline systolic and diastolic
pressure for readings within the range 130–140 and 85–
90 mmHg, respectively, were introduced [97]. Similarly, new
terms such as high resting heart rate and low resting heart
rate have been recently introduced having the potential not to
substitute the classical terms of tachycardia and bradycardia,
respectively, but to stratify the risk of cases with resting heart
rate [98]. Although there is no objective cut-off point
between high and low resting heart rate, strong clinical
evidence favors that values in the range of 80–100 bpm
determine the high resting heart rate, while low resting heart
rate varies between 60 and 80 bpm [3]. Corroborative
clinical trials support this cut-off point showing that it
corresponds to the treatment threshold at which the benefits
of treatment outweigh the risks [98].

6.3. Anti-atherogenic perspective of heart rate lowering
agents

Large clinical trials showed that traditional heart rate
lowering agents including beta-blockers and non-dihydro-
pyridine calcium antagonists (e.g. verapamil and diltiazem)
are beneficial for the secondary prevention of coronary heart
disease. More specifically, beta-blockers were found to
reduce morbidity and mortality in patients with myocardial
infarction or heart failure [98–101], whereas verapamil and
diltiazem were shown to be beneficial after myocardial
infarction, but not in heart failure [102,103]. However, the
specific mechanisms responsible for this effect are not well
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understood. In addition to the anti-arrythmogenic and anti-
ischemic effect of beta-blockers and calcium antagonists, the
pathways mentioned above regarding the effect of high heart
rate on atherosclerosis could provide a reasonable pathway
of action for these heart rate lowering agents, suggesting that
the intensive reduction of heart rate could decelerate the
progression of atherosclerosis through reduction in the
frequency and magnitude of mechanical load and prolonga-
tion of the atheroprotective diastolic phase [44]. Lowering
the heart rate could also alleviate the mechanical loading
imposed on the vulnerable atherosclerotic plaques, thus
reducing the risk of plaque rupture [94].

On the other hand, the short-term adverse effects of beta-
blockers (e.g. dyslipidemia) and the long-term ones (e.g.
diabetes), as well as their potential effect on blood viscosity
(e.g. by influencing circulating fibrinogen levels) [104]) and
haemostasis [105] may limit the overall benefit of these
agents, reducing their efficiency in primary prevention of
coronary artery disease [99,106]. As far as the calcium
antagonists are concerned, although they reduce the heart
rate to a lesser degree compared with beta-blockers, they are
free of the adverse metabolic effects, which are common to
the latter [3].

Recently, ivabradine has been introduced, a new selective
heart rate lowering agent, which affects only the heart rate
without exerting any inotropic or antihypertensive action.
Although ivabradine has promising anti-atherosclerotic
properties its efficacy in reducing atherosclerosis and related
clinical outcomes needs to be tested in large clinical trials
[107].

Beside heart rate lowering agents, lipid lowering drugs
may indirectly modulate the harmful effect of a high heart rate
by altering blood vessel stiffness (e.g. statins) or by lowering
plasma fibrinogen levels (e.g. fibrates or statins), thus
alleviating the atherogenic load of increased blood viscosity
[108,109–112]. In this context, differences between lower
and higher heart rates in terms of risk may need to be
reconsidered in populations taking lipid lowering agents.

6.4. Heart rate lowering role of exercise

Apart from pharmacological heart rate lowering, aerobic
exercise has gained considerable interest [113]. Its beneficial
role is mediated through several pathways including the
periodically increased flow and concomitantly SS, especially
in atherosclerosis-prone regions, resulting in enhanced synth-
esis, release and duration of action of NO [33,114,115]. NO is
not only responsible for endothelium-dependent vasodilation,
but also has anti-inflammatory, anti-proliferative and anti-
thrombotic activity [54,69]. Although the heart rate lowering
effect of aerobic exercise remains elusive, several epidemio-
logical studies showed that exercise is effective in controlling
the sympathetic nervous system and, as a result, high heart rate
and blood pressure, thereby alleviating the local atherogenic
load [3,116]. The chronic adaptation that athlete's hearts
undergo with increased blood flow and lowered heart rate
could serve as a representative example of the salutary role of
exercise. In addition to heart rate regulation, regular exercise
may also help control weight, insulin resistance and lipid
profile [117]. Furthermore, people who exercise on a regular
basis are more likely to have a healthy lifestyle, including
smoking cessation, which, among other adverse effects, has
been shown to be associated with small and intermittent rises
in heart rate [118].

7. Conclusions

Elevated heart rate appears to be implicated in coronary
atherosclerosis in an independent manner by increasing the
magnitude and frequency of the mechanical load imposed on
the arterial wall, enhancing the exposure of endothelium to
low and oscillatory SS and intensifying the periodically
changing coronary geometry, which in turn affects the local
hemodynamic environment. High heart rate-mediated induc-
tion of coronary wall stiffness may also play a role. All these
changes modulate an atherogenic microenvironment, which
in conjunction with the effect of systemic risk factors
promotes atherosclerosis in atherosclerosis-prone regions.
Heart rate should always be considered in patients with
coronary heart disease, given that it constitutes an easily
measurable and reproducible parameter.
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