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Purpose of review

Local hemodynamic factors are major determinants of the natural history of individual

atherosclerotic plaque progression in coronary arteries. The purpose of this review is to

summarize the role of low endothelial shear stress (ESS) in the transition of early, stable

plaques to high-risk atherosclerotic lesions.

Recent findings

Low ESS regulates multiple pathways within the atherosclerotic lesion, resulting in

intense vascular inflammation, progressive lipid accumulation, and formation and

expansion of a necrotic core. Upregulation of matrix-degrading proteases promotes

thinning of the fibrous cap, severe internal elastic lamina fragmentation, and extracellular

matrix remodeling. In the setting of plaque-induced changes of the local ESS, coronary

regions persistently exposed to very low ESS develop excessive expansive remodeling,

which further exacerbates the proinflammatory low ESS stimulus. Recent studies

suggest that the effect of recognized cardioprotective medications may be mediated by

attenuation of the proinflammatory effect of the low ESS environment in which a plaque

develops.

Summary

Low ESS determines the severity of vascular inflammation, the status of the extracellular

matrix, and the nature of wall remodeling, all of which synergistically promote the

transition of stable lesions to thin cap fibroatheromata that may rupture with subsequent

formation of an occlusive thrombus and result in an acute coronary syndrome.
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Introduction

Atherosclerosis is a systemic disease with heterogeneous

manifestations. Lesions with various morphologies typi-

cally coexist in the coronary arteries of affected individ-

uals (Fig. 1) [1]. Early lesions may remain quiescent for

long periods, evolve toward flow-limiting, fibrocalcific

plaques that become clinically evident as stable angina

or develop a more inflamed phenotype. Only few among

the many inflamed plaques develop a particularly

unstable phenotype that renders them prone to rupture

and consequently trigger an acute coronary event [2].

Fibrocalcific stable plaques may also evolve from sub-

clinical plaque rupture and subsequent healing and fibro-

sis [3]. Increasing interest has focused on the mechanisms

by which a subpopulation of early lesions transition to

vulnerable, rupture-prone plaques. Early in-vivo identi-

fication of plaques destined to become vulnerable would

be of enormous clinical value, as it would provide the
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rationale for intensive systemic pharmacological treat-

ment and possibly selective, prophylactic local interven-

tions to avert future coronary events.

Despite the exposure of the entire coronary artery system

to identical systemic risk factors, the distribution of

atherosclerotic plaques [4], and particularly of high-risk

plaques [5�,6�], is highly focal. Local hemodynamic fac-

tors related to disturbed flow patterns are responsible for

the nonrandom susceptibility to atherosclerosis. Local

flow properties exhibit remarkable heterogeneity over

short distances, even in adjacent arterial regions, corre-

sponding to the heterogeneity in the spatial distribution

of atherosclerotic plaque [7,8]. Endothelial shear stress

(ESS) is the tangential force per unit area exerted on the

endothelial surface of the arterial wall by flowing blood.

Local low ESS, in particular, determines proatherogenic

endothelial cell morphologic and functional character-

istics that induce local plaque formation [9]. Spatial
rized reproduction of this article is prohibited.
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Figure 1 Atherosclerotic plaque heterogeneity within a human

coronary artery

(a). Cross section of a human coronary artery just distal to a bifurcation.
The atherosclerotic plaque to the left (circumflex branch) is fibrotic and
partly calcified, whereas the plaque to the right (marginal branch) is lipid-
rich with a nonoccluding thrombus superimposed. (b) Higher magnifi-
cation of the plaque–thrombus interface reveals that the fibrous cap over
the lipid-rich core is extremely thin, inflamed, and ruptured with a real
defect in the cap. Trichrome stain, staining collagen blue and thrombus
red. Reproduced with permission from [1].

Figure 2 Role of low endothelial shear stress in fibrous cap

attenuation and the formation of thin cap fibroatheromata

Digital photomicrographs of oil red O-stained (a and c) and CD45-
stained (b and d) fibroatheroma from a porcine coronary artery, with a
thin fibrous cap inflamed at its shoulders (small black arrowheads). (c
and d) Magnifications of the black box in a and b, respectively. The
necrotic core is extended into the media through the disrupted IEL (a and
b; large black arrowheads). (e) Association of minimum cap thickness
with the magnitude of baseline ESS; dashed lines represent 95% CI for
gradients of ESS in geometrically irregular regions, as

well as temporal shear stress gradients, have also been

implicated in atherogenesis. Arterial regions of naturally

occurring low ESS, such as branch points, bifurcations,

and inner surfaces of curvatures, are the regions primarily

involved in atherogenesis and plaque progression [7,10–

12]. Accumulating evidence now suggests that low ESS is

a critical determinant not only of plaque formation and

growth, but also of the transition of a developing plaque

to a rupture-prone phenotype [13��].

The purpose of this review is to summarize the mech-

anisms linking low ESS with the transition of developing

plaques to unstable, rupture-prone atheromata.

the regression line. The arteries were snap frozen and not pressure-fixed
immediately after harvesting; the actual lumen dimensions can therefore
not be accurately assessed because of tissue shrinkage at �808C. A,
adventitia; C, calcification; ESS, endothelial shear stress; F, fibrous cap;
IEL, internal elastic lamina; L, lumen; M, media; N, necrotic core.
Reproduced with permission from [13��].
Morphologic features of unstable plaques
Plaque rupture with superimposed thrombosis is the

predominant cause of acute coronary syndromes (ACSs)
opyright © Lippincott Williams & Wilkins. Unauth
and sudden coronary death and may contribute to the

progression of stable, fibrocalcific plaque. The thin-cap

fibroatheroma (TCFA) is the typical precursor lesion of

rupture-mediated thrombosis, accounting for about

two-thirds of ACS. The remaining coronary events are

attributed to plaque erosion or calcified nodules [14].

TCFAs are characterized by a thin fibrous cap, measuring

less than 65 mm, overlying a large necrotic core. The

fibrous cap is intensely inflamed particularly at its

shoulders (Fig. 2a–d). TCFAs contain less collagen

and fewer vascular smooth muscle cells (VSMCs) and

are more often located within expansively remodeled
orized reproduction of this article is prohibited.
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arterial segments, compared with lesions with a stable

phenotype [14].
Endothelial shear stress as a determinant of
plaque formation and localization
Extensive in-vitro work has elucidated the molecular basis

of the flow-dependent, region-specific susceptibility to

atherosclerosis. Shear stress is sensed by endothelial cell

mechanoreceptors [15]. A complex system of mechano-

transduction activates signaling pathways that modulate

gene expression profiles [16] and ultimately evokes dis-

tinct endothelial cell phenotypes [17]. The transcription

factor Krupell-like factor-2 (KLF-2) orchestrates multiple

shear-responsive atheroprotective genes under favorable

flow conditions [18,19]. Atheroprotective flow also upre-

gulates NF-E2-related factor-2 (Nrf2)-dependent anti-

oxidant genes [20]. The mitogen-activated protein kinase

phosphatase (MKP)-1, a negative regulator of p38 and

c-Jun NH(2)-terminal kinase (JNK), is a critical mediator

of the anti-inflammatory effects of physiologic values of

ESS [21�]. In contrast, low ESS mutes the effect of KLF-2

and induces the transcriptional regulator nuclear factor-

kappa B (NF-kB), which promotes proinflammatory gene

and protein expression [22,23��]. Overall, the low ESS-

induced endothelial cell changes convert biomechanical

forces to biochemical responses, enhancing the formation

of an early atherosclerotic lesion.
Figure 3 Association of the magnitude of low endothelial shear

stress with the severity of high-risk plaque characteristics
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Role of low endothelial shear stress in the
destabilization of progressing plaques
The extent of the maladaptive local inflammatory

response to the subendothelial accumulation of apolipo-

protein B-containing lipoproteins critically influences the

subsequent differentiation of an early lesion. In the

setting of local low ESS, the predominance of inflam-

mation, cell death, and extracellular matrix (ECM) degra-

dation over ECM synthesis and fibroproliferation largely

determines the transition of a subpopulation of early

lesions to rupture-prone plaques.
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�
P<0.05 for each characteristic in very low ESS vs. the respective

characteristic in moderate or high ESS; P¼0.13 for inflammation in very
low ESS vs. low ESS. Reproduced with permission from [13��].
Upregulation of local vascular inflammation
Low ESS exerts a key role in the ongoing recruitment of

circulating inflammatory cells into the vessel wall, where

they differentiate to potent sources of proinflammatory

mediators [24]. NF-kb induces the expression of adhesion

molecules [intracellular adhesion molecule (ICAM)-1,

vascular cell adhesion molecule (VCAM)-1, E-selectin],

chemoattractant chemokines, such as monocyte chemoat-

tractant protein (MCP)-1, and proinflammatory cytokines

[tumor necrosis factor (TNF)-a, interleukin (IL)-1,

and interferon (IFN)-g] [7,22,25]. Adhesion molecules

facilitate the adhesion of circulating leukocytes to the

endothelial surface, whereas MCP-1 promotes their trans-
opyright © Lippincott Williams & Wilkins. Unautho
migration into the intima. In-vivo experimental studies

have confirmed that low ESS indeed fosters an inflamed

plaque phenotype, consistent with the abundance of in-

vitro evidence. In a mouse carotid artery model of induced

flow pattern variations, regions exposed to low ESS devel-

oped vulnerable lesions, with increased expression of

VCAM-1, ICAM-1, IL-6 [26], and chemokines, predomi-

nantly fraktalkine [27]. Our group recently demonstrated

that the extent of inflammatory cell infiltration is related

in a dose-dependent manner to the magnitude of the

preceding low ESS, utilizing a well established diabetic

hyperlipidemic swine model of atherosclerosis (Fig. 3)

[13��]. This natural history study clearly indicated that

highly inflamed TCFAs exclusively develop in sites of

preceding low ESS.
Subendothelial lipid retention and expansion
of the necrotic core
Necrotic core expansion is a key factor of lesion desta-

bilization [14]. Plaque progression rate is determined by

the dose-responsive, synergistic effect of systemic hyper-

lipidemia and local low ESS [28��]. Low ESS colocalizes

with elevated luminal surface low-density lipoprotein

(LDL) cholesterol concentration, thereby locally expos-

ing the endothelium to maximal lipoprotein levels [29�].

Increased permeability of endothelial cells to lipopro-

teins [30], widening of intercellular junctions [7,31], and

the upregulation of LDL receptors [32] potentiate intra-

cellular lipid influx in fibroatheromata developing in a

low ESS milieu. Furthermore, low ESS-induced proin-
rized reproduction of this article is prohibited.
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flammatory cytokines, oxidative stress, and activation of

the Fas ligand promote macrophage apoptosis. When

inflammation prevails in the intima, the apoptotic process

is not properly coupled with phagocytic clearance (effer-

ocytosis); as a result, accumulating necrotic debris con-

tributes to the expansion of the necrotic core [33��].

Intimal neovascularization is also critical in promoting

plaque progression and instability [34��]. Neovessels may

serve as conduits for the extravasation of inflammatory

cells and erythrocyte membrane-derived cholesterol

and proinflammatory interleukins into the core [35�,36�].

Low ESS may contribute to plaque neovascularization by

promoting intimal thickening with resulting local hypoxia,

a potent angiogenic stimulus [37], and by upregulating the

expression of the angiogenic factor vascular endothelial

growth factor (VEGF) [26].
Extracellular matrix degradation
The status of the ECM is regulated by the balance

between macromolecule synthesis and enzymatic break-

down. Collagenases degrade the major plaque-stabilizing

structural protein, that is, interstitial collagen. Elastases

break down elastin fibers, facilitating the migration of

macrophages and VSMCs and promoting arterial remo-

deling [38]. Recent work has shown that the activation of

JNK, a regulator of flow-responsive inflammatory gene

expression, is modulated by ECM remodeling [39�],

suggesting a positive feedback pathway by which inflam-

mation-driven matrix remodeling further augments the

endothelium-dependent vascular inflammation. In-vitro

studies have associated low ESS with the upregulation of

matrix metalloproteinases (MMPs) [40] and cathepsins

[41]. Mohler et al. [42��] determined time-dependent

patterns in the expression of genes implicated in porcine

coronary plaque progression and found that MMP-9 was

remarkably upregulated at advanced stages of plaque

evolution. Our group further showed a lesion-specific,

ESS-related variability in the expression of ECM cata-

bolizing enzymes. Exposure to very low ESS induced the

activity of MMP-2, 9, 12 and cathepsins K, L, S relative to

their endogenous inhibitors, ultimately resulting in the

formation of TCFAs [43��]. Minimum cap thickness in

these TCFAs was related to the magnitude of baseline

ESS (Fig. 2e). These in-vivo investigations clearly demon-

strated that low ESS-induced ECM degradation promotes

matrix remodeling and thinning of the fibrous cap, both

critical steps in rendering a plaque rupture-prone.
Heparan sulfate proteoglycans
Recent evidence suggests a role of low ESS in the enzy-

matic regulation of matrix glycosaminoglycans. Proteo-

glycans can alter subendothelial lipid deposition and

retention. Although proteoglycans with predominantly

chondroitin and dermatan sulfate chains display increased
opyright © Lippincott Williams & Wilkins. Unauth
affinity to atherogenic lipoproteins [44], heparan sulfate

proteoglycans are considered antiatherogenic due to their

potential to inhibit LDL binding [45] and monocyte

adhesion [46]. Heparanase-mediated removal of heparan

sulfate chains from ECM proteins facilitates proteolytic

digestion by MMPs [47]. We recently found that hepar-

anase was upregulated in coronary segments that were

exposed to low ESS and evolved to TCFAs; notably,

heparanase colocalized with inflammatory cells, lipid

deposition, and MMP expression (Fig. 4) [48��]. Overall,

heparanase may be a powerful regulator of plaque pro-

gression and may act in concert with MMPs in the degra-

dation of the ECM under low ESS conditions.
Smooth muscle cell migration and apoptosis
Inflammatory mediators including IFN-g, FasL, TNF-a,

and reactive oxygen species can activate caspases and elicit

mitochondrial dysfunction and apoptosis of VSMCs [49],

resulting in a likely decrease in the number of smooth

muscle cells (SMCs) in TCFAs [14]. Low ESS promotes

VSMC migration from the media to the intima through

upregulation of the SMC mitogens platelet-derived

growth factor (PDGF)-A and PDGF-B [50], endothelin-

1 [51], and VEGF [26]. However, low ESS also induces

VSMC apoptosis, mediated by the downregulation of

protein-Rho-GDP dissociation inhibitor alpha (Rho-

GDIa), a modulator of Rho family signal transduction

[52��]. The apoptotic death of this major cellular source

for the renewal of the fibrous cap’s collagen may represent

a further mechanism of plaque destabilization. Further-

more, VSMCs exert an antiapoptotic effect on macro-

phages and monocytes [53], such that VSMC apoptosis

may indirectly facilitate apoptosis of inflammatory cells

and thus cause an increase in the size of the necrotic core.
Effect of low endothelial shear stress on
arterial remodeling
The arterial wall dynamically responds to plaque for-

mation. The nature of the wall’s remodeling, regulated

by systemic, genetic, and local hemodynamic factors, can

range from constrictive to compensatory expansive to

excessive expansive [54]. Expansively remodeled coron-

ary plaques are associated with increased inflammation

[55] and unstable clinical presentation [56]. Interestingly,

Okura et al. [57��] reported that the remodeling pattern of

ACS culprit lesions might be a better predictor of long-

term (3-year) clinical outcome than the presence of

plaque rupture. A dynamic interplay between the local

ESS and the vascular remodeling is a critical determinant

of the natural history of an individual lesion [2]. We

recently showed that regions culminating in high-risk

excessive expansive remodeling had been exposed to

very low ESS throughout their natural history, utilizing

serial, in-vivo vascular profiling of porcine coronary
orized reproduction of this article is prohibited.
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Figure 4 Colocalization of heparanase with lipids and inflammatory cells in a coronary region of low endothelial shear stress

Figure from a porcine coronary artery section, showing a thin cap fibroatheroma that developed in a coronary region of preceding low ESS. Note that
immunostaining for heparanase (HPA, a) colocalizes with staining oil-red-O (lipids, b), and immunostaining with CD45 (inflammatory cells, c). Staining
with picrosirius red (PR, d) indicates collagen and reveals the thin fibrous cap overlying the necrotic core.
arteries at five consecutive time points [58��] (Fig. 5). In

the setting of plaque-induced changes of the local geo-

metry and thereby of local flow waveforms, only a small

subpopulation of developing atheromata is located in a

persistently low ESS milieu, related to the magnitude of

low ESS and, consequently, the magnitude of intense

inflammation. The elaboration of matrix-degrading pro-

teases, with subsequent elastolysis in the internal elastic

laminae and the media beneath the plaque, is critical

in promoting aneurysm-like expansion of the highly

inflamed wall and turning the ostensibly protective func-

tion of compensatory remodeling into a detrimental local

environment [13��]. Local excessive expansive remodel-

ing contributes to further lowering of the low ESS, thus

reinforcing the vicious cycle of the intense proinflamma-

tory stimulus and ultimately promoting the evolution of

an early atheroma to a TCFA.
Thrombogenicity of the necrotic core
Low ESS augments the thrombogenicity of the necrotic

core and thus the extent of thrombosis in the event of

acute plaque disruption. Low ESS-induced macrophage

accumulation and SMC apoptosis are sources of tissue

factor, a potent procoagulant factor [59]. Although ather-
opyright © Lippincott Williams & Wilkins. Unautho
oprotective flow-activated KLF-2 induces thrombo-

modulin and endothelial nitric oxide synthase expression

and reduces plasminogen activator inhibitor-1 and tissue

factor expression, muting of KLF-2 shifts the balance

toward a prothrombotic state [60].
Plaque-induced changes of local endothelial
shear stress
The magnitude, directionality, and spatial distribution of

local shear stress all change in response to the changes of

local arterial geometry induced by a growing plaque.

Thus, a developing plaque itself can modify the local

ESS milieu in specific parts of and adjacent to the lesion.

Lumen narrowing because of a stenotic plaque results in

increased flow velocity at the throat of the plaque, low

ESS in the upstream region, and disturbed flow in the

form of directionally oscillatory ESS in the downstream

shoulder of the plaque [61]. The composition of an

individual plaque displays considerable spatial hetero-

geneity. The downstream region contains significantly

more smooth muscle cells, whereas the upstream portion

is more inflamed, containing a high number of macro-

phages [62] and expressing higher gelatinolytic activity

[63]. Cheng et al. [26] showed in a mouse model that
rized reproduction of this article is prohibited.
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Figure 5 Effect of persistently low endothelial shear stress in the formation of expansively remodeled atherosclerotic plaque

Representative example of a serially profiled porcine coronary artery. (a) Two-dimensional maps show the ESS distribution along the artery length at five
consecutive time points of in-vivo vascular profiling at weeks 4, 11, 16, 23, and 36 after the induction of diabetes and hyperlipidemia. In each map, the
horizontal axis represents the artery circumference (8) and the vertical axis the artery length (mm). The red rectangle includes a proximal segment which
is peristently exposed to low ESS, throughout its natural history. (b) Two-dimensional maps showing the plaque thickness, external elastic lamina radius,
and lumen radius distribution along the artery length at final week 36; in each map, the horizontal axis denotes the artery circumference (8) and the
vertical axis the artery length (mm). Red rectangles include the same proximal segment, as in subpart a. This arterial segment displays maximal plaque
thickness and also significant expansion of the vessel wall, as indicated by the orange–red color in the corresponding maps. Note that even the lumen
exhibits maximal expansion, despite the formation of significant plaque, indicating excessive expansive remodeling, that is, an exaggerated, aneurysm-
like form of arterial remodeling that not only preserves normal lumen dimensions, but also actually causes lumen increase under the effect of sufficiently
low ESS. ESS, endothelial shear stress.
regions exposed to low ESS upstream of a perivascular

shear stress modifier exhibited the most profound devel-

opment of highly inflamed, vulnerable carotid plaques,

whereas stable lesions formed in the downstream vortices

of lowered/oscillatory ESS. Overall, the plaque-induced

changes of local ESS seem to exert a differential effect in

distinct portions of a stenotic lesion and critically affect

the longitudinal distribution of plaque morphology; a

self-perpetuating local environment conducive to further

plaque growth is established downstream of the lesion,

whereas a vulnerable, rupture-prone phenotype develops

in the low-ESS upstream shoulder (Fig. 6).

Plaque rupture represents the most devastating compli-

cation of atherosclerotic disease. Frank plaque rupture

may be related to low ESS-mediated inflammation and
opyright © Lippincott Williams & Wilkins. Unauth
matrix degradation culminating in severe plaque fragility

and severe proclivity to rupture from simple daily hemo-

dynamic stresses [64]. It has also been postulated that

localized high shear stress may actually trigger fibrous cap

rupture [65–67]. Because the values of wall shear stress

are markedly lower than the values of blood pressure-

induced tensile stress in the plaque cap, it is unlikely that

high wall shear stress contributes significantly to the

direct mechanical failure of the cap. However, high

ESS may induce pathobiologic responses within the

plaque that also exacerbate plaque fragility, as suggested

by the reported association of regions with high ESS with

high strain, a presumed surrogate marker of vulnerable

plaque composition [68,69]. Further, high ESS may be

implicated in local endothelial erosion, increased platelet

adhesion, and induction of acute coronary thrombosis [7].
orized reproduction of this article is prohibited.
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Figure 6 Association between longitudinal atherosclerotic plaque morphology and spatial distribution of local endothelial shear

stress

(a) Top: histologic appearance of a human carotid artery plaque stained with Elastic–van Gieson. Horizontal arrow indicates the direction of blood flow.
Box on the left indicates proximal (upstream) shoulder of plaque; box on the right represents the distal (downstream) shoulder. Middle: boxed area of
proximal shoulder stained with anti-CD68 (macrophages; MF) and anti-a-actin (smooth muscle cell, SMC). Bottom: boxed area of distal shoulder
stained with anti-CD68 (macrophages; MF) and anti-a-actin (smooth muscle cell, SMC). Note the abundance of macrophages in the upstream
shoulder and of smooth muscle cells in the downstream shoulder, respectively. Modified from [62]. (b) Differential spatial distribution of ESS along a
lumen-protruding plaque. Arrows represent velocity vectors. The upstream shoulder is exposed to low ESS. Local ESS is elevated in the throat, and
low/oscillatory in the downstream shoulder of the developing plaque. These local ESS conditions promote the formation of a vulnerable, rupture-prone
plaque phenotype, indicated by the red rectangle, upstream of the lesion, and additional growth, indicated by the dashed line, downstream of the
plaque. ESS, endothelial shear stress; NC, necrotic core.
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Effect of antiatherosclerotic medications on
the proinflammatory effect of low endothelial
shear stress
The plaque-stabilizing effect of recognized antiathero-

sclerotic drugs may, at least in part, be mediated by the

attenuation of the proinflammatory low-ESS environment

of high-risk plaques, indirectly emphasizing the critical

role of low ESS in plaque destabilization. We have shown

that lifetime administration of valsartan in a diabetic,

hyperlipidemic swine model, alone or in combination with

simvastatin, attenuated the proinflammatory effect of local

low ESS. These medications reduced the expression of

MMP-9, which is actively involved in the ECM degra-

dation, as well as the MMP/tissue inhibitor of metallopro-

teinases (TIMP) ratio, thereby shifting the ECM balance

toward less degradation and limiting the severity of expan-

sive remodeling. The beneficial effect of valsartan and

simvastatin in reducing the severity of inflammation and

stabilizing high-risk plaque characteristics in regions of

low ESS was independent of a blood pressure-lowering

and lipid-lowering effect [70��]. Statins, in particular, are

potent promoters of the atheroprotective regulator KLF-2

and up-regulate several of its downstream transcriptional

targets [71]. Statins may thereby exert their well described

nonlipid-lowering vasculoprotective effects by counter-

balancing the proatherogenic effect of low ESS on the

KLF-2-regulated genes cassette.
opyright © Lippincott Williams & Wilkins. Unauth

Figure 7 Role of low endothelial shear stress in the formation of r

Schematic presentation of the mechanisms whereby low local ESS promote
major precursor lesion of rupture-mediated thrombosis. ECM, extracellular m
thin-cap fibroatheroma.
Clinical perspectives of the in-vivo
assessment of endothelial shear stress
As discussed above, low ESS is a major determinant of

vascular disorder and clearly plays a critical role in ren-

dering a subpopulation of developing atheromata prone

to rupture. A sophisticated computational model by

Ohayon et al. [72��] recently showed that the proclivity

for acute plaque disruption is not determined by fibrous

cap thickness alone, but rather by a combination of cap

thinning, necrotic core thickness, and expansive arterial

remodeling. These high-risk morphologic features are all

exacerbated in plaques that progress in a low-ESS setting

(Fig. 7).

Despite major advances in prevention and treatment, the

thrombotic complications of atherosclerotic disease

remain a major cause of mortality. Residual cardiovas-

cular morbidity is observed despite the aggressive

pharmacological treatment in high-risk patients [73]

and despite the addition of coronary interventions to

optimal medical therapy [74]. Major cardiac events occur

in nontarget lesions following successful interventions

[75], clearly indicating the inadequacy of currently

applied methodologies to predict and adequately target

plaques that eventually culminate in acute coronary

events. Coronary interventions are currently employed

either to treat ACS culprit lesions or to restore flow in
orized reproduction of this article is prohibited.
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obstructive, flow-limiting plaques, thereby ignoring a large

proportion of minimally stenotic TCFAs, potential pre-

cursors of ACS. Although several imaging techniques have

been proposed to assess morphologic or functional charac-

teristics of rupture-prone plaques before they rupture, no

widely accepted diagnostic method to prospectively

identify such high-risk plaques is available at present.

Knowledge of local flow patterns and identification of

arterial regions with naturally occurring low ESS cannot

currently prompt interventions in native anatomy to pre-

vent atherosclerosis or atherosclerotic sequelae. However,

in-vivo identification of coronary regions of low ESS and

expansive remodeling, utilizing catheterization-based [10]

or noninvasive techniques of vascular profiling [76��], may

be predictive of future high-risk plaque formation and can

be used to risk-stratify individual lesions that have, or are

likely to acquire, characteristics of vulnerability [77��].

The early characterization of a coronary region most likely

to progress to a rupture-prone phenotype may enable

primary prevention at the level of individual atherosclero-

tic plaque and thereby provide the rationale for focused

systemic or local treatments to avert future coronary

events. Established systemic approaches and novel thera-

peutic targets may be employed to impede or even reverse

the progression towards vulnerable plaques and stabilize

high-risk plaque characteristics. Furthermore, regional

therapy of high-risk plaque in the form of highly selective,

prophylactic coronary interventions may be justified to

‘eradicate’ plaques destined to become vulnerable. The

association of drug-eluting stents [78��,79��], drug-coated

balloon catheters [80��], and, more recently, bioabsorbable

everolimus-eluting stents [81] with a lower risk of coronary

in-stent restenosis or stent thrombosis may render pre-

emptive stenting of high-risk plaques plausible. A large-

scale clinical natural history study (the PREDICTION

trial) is currently underway to investigate whether coronary

segments with low ESS and expansive remodeling are the

regions that result in rapid progression of atherosclerosis

and eventually in plaque rupture. This study may validate

the predictive value of vascular profiling for the accurate

risk stratification of early coronary plaques and thereby

potentially change the paradigm for management of

patients with coronary artery disease.
Conclusion
Low ESS regulates multiple pathways that synergistically

induce plaque destabilization. Low ESS upregulates local

inflammation, promotes reduced synthesis and increased

catabolism of ECM macromolecules, and elicits exces-

sive expansive wall remodeling, a high-risk remodeling

pattern that further exacerbates the adverse low-ESS

stimulus. Early lesions persistently exposed to low ESS

may thereby progress towards highly inflamed TCFAs.

The in-vivo measurement of ESS may be used for the
opyright © Lippincott Williams & Wilkins. Unautho
early identification of lesions that are likely to acquire a

rupture-prone phenotype and trigger coronary thrombo-

sis. Early identification of high-risk plaques before they

become vulnerable may set the stage for focused systemic

treatments or prophylactic local interventions to avert

future coronary events.
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