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Purpose of review

Atherosclerotic disease progression is determined by localized plaque growth, which is

induced by systemic and local hemodynamic factors, and the nature of the wall

remodeling response. The purpose of this review is to summarize the processes

underlying the heterogeneity of coronary atherosclerosis progression in relation to the

local hemodynamic and arterial remodeling environment.

Recent findings

Multiple competing biological processes in the extracellular matrix define the extent of

vascular remodeling and disease progression. The remodeling phenomenon is not

consistent but is characterized by great phenotypical heterogeneity which reflects the

complex effect of systemic, genetic and hemodynamic factors on the arterial wall

response to plaque formation and progression. The exaggeration of expansive

remodeling (i.e., excessive expansive remodeling) likely contributes to the

transformation of an initially favorable action into an excessive course of vessel

expansion, continued disease progression and plaque instability. Extremely low

endothelial shear stress and excessive expansive remodeling establish a vicious cycle

which leads to the formation of severe plaques with high-risk characteristics.

Summary

The dynamic interplay between the local hemodynamic environment and the wall

remodeling behavior determines the complexity of the natural history of atherosclerosis

and explains the development of localized plaque vulnerability.
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Introduction

The burden of atherosclerotic cardiovascular disease is

growing globally, and coronary artery disease (CAD) is

projected to be the leading cause of morbidity and

mortality worldwide in the following decades [1]. Acute

clinical manifestations are responsible for the increased

mortality and often constitute the end-result of a long and

slow subclinical course of disease which has not caused

any symptoms during the previous years [2��]. Treatment

strategies are often made after an acute event in many

patients who were fortunate to survive. Current diagnos-

tic and management strategies are limited in identifying

high-risk lesions because there is a high occurrence of

adverse cardiac events in patients with known CAD, even

when treated with aggressive systemic management, and

an increased incidence of acute coronary syndromes in

nonculprit lesions following successful percutaneous
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coronary intervention [3,4]. In-vivo assessment of the

natural history of atherosclerosis would be of paramount

importance for providing insight into the distinct nature

of high-risk and stenotic plaques compared with quies-

cent ones before an event, thereby potentially enabling

their identification and the application of pre-emptive

strategies to avert an adverse clinical event.

Although atherosclerosis is a systemic disease, its distri-

bution is multifocal and heterogeneous such that multiple

atherosclerotic lesions with various morphologies and at

different stages of progression typically co-exist in the

coronary arteries of affected individuals [5]. Local hemo-

dynamic factors determined by flow properties exhibit

remarkable heterogeneity over short distances and are

causally related to the heterogeneity in the spatial distri-

bution of atherosclerotic plaques [6]. Endothelial shear

stress (ESS), in particular, exerts pathobiological effects on
orized reproduction of this article is prohibited.
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the arterial endothelium and wall that are associated with

increased atherosclerosis susceptibility, initiation and

development [7].

Localized accumulation of plaque in the vessel wall was

previously considered to be the principal determinant

of lumen narrowing. However, vascular remodeling,

initially reported in humans by Glagov et al. [8] as the

ability of the vessel wall to adapt and accommodate a

growing plaque by an increase of the internal elastic

lamina area, is a fundamental component of atherosclero-

sis. Recent understanding of this phenomenon as a

response of the vessel wall to hemodynamic, mechanical,

and biochemical stimuli has been of major importance in

revealing the nature of the disease process. Furthermore,

the remodeling response to plaque accumulation is not

consistent because the degree of compensation varies

significantly between arterial segments [9], different

remodeling patterns (i.e., constrictive and expansive)

co-exist in the same artery, and temporal changes in

remodeling patterns can also occur in response to drug

treatment [10]. This high variability in the remodeling

response is an additional feature increasing considerably

the complexity of the atherosclerotic disease progression.

The purpose of this review is to summarize the molecular

mechanisms and histopathological characteristics associ-

ated with atherosclerotic disease progression and the

dynamic nature of vascular remodeling in relation to the

hemodynamic environment, and thus provide insight into

the complexity of the natural history of atherosclerosis.
Localized plaque growth and biology of the
endothelial shear stress effect
Atherosclerosis predominantly forms in specific regions of

thevasculature determinedby localvasculargeometry, and

blood flow-induced ESS is causally related to the focal and

heterogeneous spatial distribution of atherosclerotic

plaques. Local low ESS, in particular, determines proather-

ogenic endothelial cell morphologic and functional charac-

teristics that induce localized development of lesions [7].

Spatial gradients of ESS in geometrically irregular regions,

as well as temporal ESS gradients due to flow pulsation,

have also been implicated in atherogenesis [11]. Arterial

regions of naturally occurring disturbed flow and low or

oscillatory ESS, such as inner surfaces of curvatures, branch

points and bifurcations, are the regions primarily involved

in atherosclerosis initiation and development [12].

Cardiovascular risk factors (e.g., diabetes, hyperlipidemia,

hypertension, cigarette smoking) lead to endothelial dys-

function associated with lipid and, consequently, macro-

phage influx to the intima. Disease progression is essen-

tially determined by the magnitude of lipid influx, lipid

oxidation, the resultant degree of inflammation, and the
opyright © Lippincott Williams & Wilkins. Unautho
wall response. In the setting of systemic risk factors, low

ESS leads to the formation of atherosclerotic lesions

through a multifactorial influence on the arterial wall,

which involves the conversion of biomechanical stimuli

to biochemical responses by endothelial cells [13�]. In-

vitro and animal experiments have shown that low ESS-

induced activation of the nuclear factor kappa B (NF-kB)

signaling inflammatory pathway and muting of the

Kruppel-like factor-2 (KLF-2) atheroprotective transcrip-

tional pathway leads to increased expression of adhesion

molecules (e.g., inter-cellular adhesion molecule-1, vascu-

lar cell adhesion molecule-1, selectins) and chemokines

(e.g., monocyte chemoattractant protein-1, interleukin-8,

fraktalkine) [14], which mediate the recruitment of inflam-

matory cells in the intima, and decrease of atheroprotective

molecules, such as nitric oxide and prostacyclin [15��].

Low ESS has also been recently implicated in the ded-

ifferentiation of smooth muscle cells (SMCs), which

acquire a more synthetic phenotype and contribute to

plaque growth [16�]. At more advanced stages of athero-

sclerosis, low ESS exacerbates additional growth in regions

that already contain significant plaque, underscoring the

critical role of proatherogenic flow conditions in both

atherogenesis and disease progression [17�].
Flow-mediated physiological adaptation of
the normal arterial wall
The arterial wall is capable of undergoing major reshap-

ing, as evident by arterial adaptations during physiologi-

cal processes (e.g., vessel formation during embryogen-

esis). An abnormal change in the drag forces on the wall

activates feedback mechanisms which return these forces

to ‘normal’ values. In adult mammals, arteries establish a

diameter which, in conjunction with their normal flow

rate delivery, results in a mean and uniform ESS value

throughout the vasculature. If ESS is altered from its

physiologic state for a long period, the arterial diameter

responds by changing in such a way as to recover the

physiologic range of ESS. In normal arteries high ESS

elicits an expansive remodeling response, and low ESS a

constrictive one. Recent work has shown that there are

large variations in the remodeling response among differ-

ent inbred animal strains, underscoring the marked

genetic influences on the remodeling phenomenon

[18]. Flow-mediated physiological adaptation is geneti-

cally determined by certain genes causing fundamental

alterations in sensing or transducing the hemodynamic

signals and thus influencing the vascular wall’s ability to

normalize ESS to physiological values [19,20��].
Cellular and molecular mechanisms
underlying the remodeling phenomenon
Extracellular matrix, which consists of elastins, collagens

and proteoglycans, provides support to tissue and
rized reproduction of this article is prohibited.
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maintains the integrity of the arterial wall. Remodeling of

the extracellular matrix allows the arterial wall to adapt to

disturbances in flow and restore physiological ESS, yet

also contributes to disease processes, such as the devel-

opment of atheroma within the arterial wall. A controlled

process regulated by the balance between matrix protein

synthesis and enzymatic breakdown is involved in the

remodeling phenomenon. Synthesis is mediated by

matrix-producing cells, primarily vascular SMCs and

fibroblasts. Matrix-degrading proteases are key mediators

of matrix breakdown and include mainly matrix metallo-

proteinases (MMP-1, MMP-2, MMP-9) [21�,22], cathep-

sin cysteine proteases (cat L, K, S) [23,24] and serine

proteases of the plasminogen activator system [urokinase

plasminogen activator (uPA)] [25�], produced by SMCs,

endothelial cells and macrophages. Dynamic equilibria

also regulate the function of SMCs and the activity of

proteolytic enzymes. SMC proliferation and apoptosis

[26], and thus matrix production, are physiologically

under the control of growth-promoting factors (e.g.,

platelet-derived growth factor, vascular endothelial

growth factor, basic fibroblast growth factor, angiotensin

II) and inhibitors (e.g., tissue growth factor (TGF)b,

nitric oxide, interferon-g, heparan sulfate). Similarly,

the enzymatic activity of MMPs, cathepsins and uPA

is the net result of their expression and post-transcrip-

tional activity, and their inhibition by tissue inhibitors of

matrix metalloproteinases (TIMPs), cystatins and plas-

minogen activator inhibitors (PAIs), respectively.

Interactions between SMCs, growth factors, matrix

protein synthesis, and proteolytic enzymes and their

inhibitors create a complex system of vascular homeo-

stasis. The upregulation and downregulation of each of

these components essentially favor either extracellular

matrix degradation or collagen synthesis and fibrosis,

which may consequently lead to vessel expansion or

constriction, respectively.

Matrix turnover and degradation as well as inflammatory

infiltration are important features in outward remodeling.

A recently described molecule, the Toll-like receptor 4

(TLR4), is an important cellular receptor affecting col-

lagen turnover by decreasing collagen density and promot-

ing vessel expansion [27]. Furthermore, severe disruption

of the internal elastic lamina, which facilitates SMC

migration, occurs in atherosclerotic lesions with decreased

levels of endogenous protease inhibitors [28,29]. Factors

known to be involved in cardiovascular pathologies, such

as biochemical stress, vessel injury, mechanical stretch

[30], shear-mediated mechanisms [31], cytokines and

oxidative stress [32], can affect the dynamic equilibria

in the extracellular matrix and potentially stimulate pro-

tease expression, production and activation [33]. Macro-

phage-derived foam cells, which accumulate in growing

lesions as a response to lipid intake, release reactive oxygen
opyright © Lippincott Williams & Wilkins. Unauth
species via NAD(P)H oxidase and increase enzymatic

matrix degradation, thereby facilitating expansive remo-

deling [34,35��]. Low ESS is also associated with intense

inflammatory cell infiltration, severe fragmentation of the

internal elastic lamina and cap thinning [36], and enhanced

expression and activity of MMPs and cathepsins in relation

to their inhibitors (Fig. 1) [37�]. In addition to intensive

inflammation and matrix degradation, low ESS promotes

SMC apoptosis and attenuates matrix synthesis [38].

The predominance of fibroproliferative processes leads to

the development of inward, or constrictive, remodeling.

Such regions are characterized by decreased infiltration of

inflammatory cells, low protease activity and increased

matrix production. An important role in SMC phenotypic

modulation, migration and proliferation has been found

for uPA and its receptor [39], which is upregulated in

dedifferentiated SMCs and can alter the expression of

pro-inflammatory and oxidation-related genes promoting

neointima formation and vessel constriction [40��].

Furthermore, a healing response in sites of silent plaque

(micro)ruptures favors an increased rate of SMC prolifer-

ation with a decrease in macrophage content and inflam-

matory and apoptosis markers over time [41��]. The

initiation of the coagulation cascade in regions of healed

plaque rupture or endothelial erosion leads to fibrin

deposition, intra-intimal foci of thrombi and collagenous

proteoglycan-rich neointima showing demarcation of the

hemorrhage [42]. SMCs interact with the fibrin clot and,

ultimately, such regions undergo scarring followed by

retraction of the internal elastic lamina and likely con-

striction [43,44].

Genetic factors also exert a role in the remodeling

phenomenon in atherosclerotic arteries since gene var-

iants that enhance the susceptibility to vascular damage

and affect vascular remodeling have been identified [45]

and gene transfer (e.g., VEGF165, TGFb3) interventions

are reported to be capable of modifying the remodeling

response [46,47]. Furthermore, gene–environment inter-

actions are implicated in SMC proliferation and matrix

protease activity and are regulated by epigenetic mech-

anisms such as histone acetylation and DNA methylation

[48��].

The remodeling process is clearly the result of multiple

interacting molecules regulating complex biological path-

ways in the vascular wall constituting a fine balance of

matrix protein synthesis and breakdown as a response to

exogenous factors.
Heterogeneity of the remodeling response in
atherosclerotic arteries
Although most (>50%) arterial segments with minimal

disease exhibit compensatory expansive remodeling,
orized reproduction of this article is prohibited.
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Figure 1 Differential degree of elastolytic activity and inflammation in coronary regions with low vs. high endothelial shear stress

A porcine coronary artery section showing increased elastolytic activity (a, in-situ zymography for cathepsins activity), which colocalizes with profound
inflammatory infiltration (b, immunostaining with CD45) in a region of low endothelial shear stress (ESS). Conversely, in a region with high ESS, there is
absence of elastolytic activity (c) and inflammation (d). Arrows indicate the cap and asterisks the deep intimal area. ESS, endothelial shear stress.
Reproduced with permission from [37�].
some segments excessively remodel (excessive expan-

sion) showing an increase in both vessel and lumen

compared with reference nondiseased areas, and some

fail to remodel outward or even appear to constrict in

response to plaque [49,50]. Insulin requirements and

metabolic control have been found to influence the

remodeling pattern [51��], and smoking is known to

attenuate the adaptive remodeling response [52].

Furthermore, a marked heterogeneity in remodeling

response exists across coronary arteries within the same

patient [49], and variations in remodeling patterns

between different vascular beds have also been described

[53�].
Vascular remodeling patterns and
atherosclerotic disease progression
Compensatory expansive remodeling is an important

component in atherosclerosis aimed at delaying the

development of significant lumen compromise. How-

ever, in arterial segments with overcompensation, this
opyright © Lippincott Williams & Wilkins. Unautho
initially favorable remodeling action may eventually

increase the vulnerability of macrophage-rich athero-

sclerotic plaques [54], which do not typically cause a

stenosis, but may lead to an unheralded acute event.

When the imbalance in matrix synthesis and degradation

shifts towards proteolysis, then increased fragmentation

of the internal elastic lamina ensues and the vessel

expands excessively. This process of intense inflam-

mation and matrix breakdown characterizing excessive

expansive remodeling may result in significant intra-

plaque oxidation, necrosis and ischemia, which are

major stimuli for release of angiogenic factors leading

to vasa vasorum neovascularization [55��]. Neovessels

nourish the highly inflamed plaque with extra lipids,

cytokines and inflammatory cells and are detrimental

by causing further plaque growth and instability; intra-

plaque hemorrhage due to neovessel fragility also con-

tributes significantly to necrotic core expansion, possibly

by accumulation of the cholesterol-rich erythrocyte mem-

branes (Fig. 2) [56��,57�,58�]. The extent of expansive

(excessive vs. compensatory) remodeling appears to
rized reproduction of this article is prohibited.
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Figure 2 Intraplaque microvessels show abnormal endothelial cell morphology, aberrant junctions, and leukocyte infiltration as

shown by electron microscopy

(a) Ultrastructure of an adventitial microvessel (dashed line indicates circumference) in a nondiseased coronary artery with luminal RBCs (electron
microscopy,�8000). (b) Magnification of the boxed region in (a) of microvessel with intact BM and interendothelial junction indicated by close contact
(white arrows) between ECs (�20 000). (c) Ultrastructure of intraplaque microvessel with leukocytes (white asterisks) (�650). (d) Magnification of the
boxed region in C showing aberrant inter-EC junction (white arrows) and BM detachment (black arrow) (�4600). (e) Dysfunctional EC ultrastructure in
an intraplaque microvessel (�6300): membrane blebs (black arrow) and intracytoplasmic vacuoles (white asterisk). (f) Leukocytes (asterisks) adhering
to intraplaque microvessel endothelium (�460). (g) Immunohistochemistry shows CD45þ cells in and near microvessels (arrows). (h) Immunohis-
tochemistry showing mast cell tryptase-positive cells at larger distance from microvessels (arrows). BM, basement membrane; EC, endothelial cell;
L, lumen; RBC, red blood cell. Reproduced with permission from [56��].
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Figure 3 Vascular wall expansion with large lipid core vs. internal elastic lamina retraction with luminal narrowing following a healed

plaque rupture

On left panel (proximal reference segment), the internal elastic lamina (IEL) area is 13.2 mm2, the percentage of stenosis is 22%, and the lumen area is
9.0 mm2. Immediately (4 mm) distal to this (middle panel), the IEL area is 16.6 mm2, the percentage of stenosis is 66%, and lumen is 5.6 mm2; in this
segment, there is a large lipid core and calcification. In the healed rupture site (right panel) further distal (8 mm from reference segment), the IEL is
11.6 mm2, the percentage of stenosis is 75%, and lumen is 2.9 mm2; this segment is predominantly fibrous. PLAD, proximal left anterior descending
artery. Reproduced with permission from [44].
influence the nature and degree of subsequent plaque

progression [17�].

Failure of the remodeling phenomenon or, even worse,

development of constrictive remodeling significantly

accelerates the narrowing of the lumen. Constrictive remo-

deling has been shown to occur early in the formation of

some plaques and to be a dominant contributor of lumen

compromise in coronary arteries [59,60]. Such lesions are

rich in fibrotic content, which characterizes a more stable

plaque phenotype [44,54]. Furthermore, constrictive

remodeling frequently represents a late-stage phenom-

enon in the setting of prior repetitive ruptures of an

inflamed high-risk plaque, and wound contraction during

plaque healing processes has been reported as an import-

ant mechanism of arterial narrowing beyond the magni-

tude of plaque burden alone (Fig. 3) [42,44].
The role of endothelial shear stress in
determining the extent of expansive
remodeling in atherosclerotic arteries
As described above, local ESS influences key mediators

in the arterial wall which play a vital role in the balance of

matrix protein synthesis and degradation, and thus it can

potentially determine the critical point beyond which the

favorable compensatory remodeling phenomenon trans-

forms into an adverse excessive expansive response. The

magnitude of low ESS is directly related to the intensity

of local inflammation and matrix breakdown, and extre-

mely low ESS leads to the development of highly

inflamed thin cap fibroatheromas characterized by exces-

sive expansive remodeling [61�]. A disproportionate

vessel expansion to plaque growth due to extremely

low ESS is accompanied by lumen increase, which
opyright © Lippincott Williams & Wilkins. Unautho
further decreases ESS, and establishes a vicious cycle

between persistently very low ESS and excessive expan-

sive remodeling, promoting intense plaque inflammation

and internal elastic lamina fragmentation. In contrast,

arterial regions with low, but not extremely low, ESS are

characterized by moderate plaque inflammation and a

balanced matrix turnover, which result in a controlled

expansion of the vessel wall compensating for the grow-

ing plaque. Lesions with compensatory expansive remo-

deling have higher ESS at preceding time points

compared with those with excessive expansive remodeling

and result in a serial increase of ESS, thereby ameliorating

the initial adverse low ESS stimulus (Fig. 4) [17�].

The value of low ESS that is ‘extremely low’ and, con-

sequently, elicits the aforementioned transformation of

compensatory expansive remodeling to excessive expan-

sive remodeling is not absolute but is relative and depen-

dent on the nature and magnitude of concomitant

systemic risk factors. Recent work has shown, for

example, that the greater the serum cholesterol, the

higher is the ESS threshold associated with the formation

of advanced high-risk plaques [62�]. Although the local

hemodynamic environment is important in explaining

the nonuniform response of vascular remodeling to lesion

progression and, consequently, the heterogenic nature of

atherosclerosis, the pathobiologic effects triggered by the

local hemodynamic environment are clearly modulated

by systemic risk factors.
Temporal variability and dynamic nature of
vascular remodeling
Recent intravascular ultrasound (IVUS) serial assess-

ments of vascular remodeling at two time points in
rized reproduction of this article is prohibited.
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Figure 4 Interrelationship between the hemodynamic and remodeling environment in a serial experimental study of coronary

atherosclerosis
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(a) Local ESS at weeks 4, 11, 16, and 23 in segments categorized by the remodeling pattern at the immediately following time point, that is, week 11,
16, 23, and 36, respectively. At all time points, segments with excessive expansive remodeling had significantly lower preceding ESS compared with
segments with compensatory or constrictive remodeling. (b) Impact of each remodeling pattern on local ESS. For segments with each remodeling
pattern at all time points, local ESS at any given time point of remodeling assessment is compared with the local ESS at the immediately preceding time
point. ESS generally tended to decrease further in segments with excessive expansive remodeling, and increased in segments with compensatory or
constrictive remodeling. ESS, endothelial shear stress. Reproduced with permission from [17�].
patients under lipid-lowering treatment have provided

a greater understanding of the variable nature of

the remodeling response compared with single-time

measurements, and have demonstrated temporal

changes in remodeling patterns following drug therapy

[63]. Our group recently demonstrated that there was

remarkable heterogeneity of the remodeling response

over time in a novel study of experimental atherosclero-

sis with serial IVUS measurements at five time points.

Although the majority of arterial segments initially dis-

playing compensatory remodeling remained with that

remodeling pattern over time, a substantial proportion of

coronary arterial segments evolved through different

remodeling patterns demonstrating highly variable

remodeling trajectories (Fig. 5) [17�]. The relationship

between plaque growth and vascular remodeling is not

monotonic over time, but the arterial wall dynamically

and continuously responds to its local environmental

influences, including the progressing plaque. Each

remodeling pattern (i.e., compensatory expansive,

excessive expansive and constrictive) may change into

a different one at a subsequent time point, and such

changes may occur multiple times.
opyright © Lippincott Williams & Wilkins. Unauth
Although it is not clear why some plaques change remo-

deling pattern whereas other plaques remain with the

same remodeling pattern, a number of hypotheses may

be pertinent. Changes in the local hemodynamic environ-

ment over time could potentially explain the dynamic

nature of the remodeling response. The longitudinal

distribution of local ESS may indeed significantly change

in response to the changes in local arterial geometry

induced by a growing plaque, and distinct hemodynamic

environments are gradually created upstream, down-

stream and at the throat of a stenosis (Fig. 6) [64�].

Upstream regions exposed to low ESS have been demon-

strated to develop highly inflamed lesions, whereas

downstream regions exposed to low oscillatory ESS

develop stable fibrotic ones [65]. It would then be plaus-

ible to speculate that these local variations in the

morphology of the neighboring upstream and down-

stream regions of growing plaques would subsequently

elicit a differential vascular remodeling response:

upstream regions would exhibit excessive or compen-

satory expansive remodeling at a subsequent time

point depending on how low a value of ESS is created,

whereas downstream regions may develop compensatory
orized reproduction of this article is prohibited.
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Figure 5 Vascular remodeling behavior at five time points in a serial study utilizing a diabetic, hyperlipidemic model of coronary

atherosclerosis
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Individual segments, which developed significant plaque (max intima-media thickness�0.5 mm) by week 36 (n¼220), often evolved through different
remodeling patterns throughout their natural history. The majority of segments with compensatory remodeling remained with that remodeling pattern
over time. Only a small minority of segments with either excessive expansive or constrictive remodeling at week 4 continued to exhibit the same
remodeling pattern throughout their evolution. Reproduced with permission from [17�].
expansive or even constrictive remodeling. In addition,

an initial course of excessive vessel expansion, continued

disease progression and plaque instability could even-

tually lead to a plaque (micro)rupture with subsequent

healing and, consequently, a constrictive remodeling

response at subsequent time points [42].

The observations of the dynamic changes of vascular

remodeling patterns based on a pig experimental model
opyright © Lippincott Williams & Wilkins. Unautho

Figure 6 Differential spatial distribution of endothelial shear stres

Low ESS High ESS

NC

Blood flow

Upstream shoulder
vulnerable phenotype

The upstream shoulder is exposed to low ESS. Local ESS is elevated in the t
developing plaque. These local ESS conditions promote the formation of a vu
upstream of the lesion, and additional growth, indicated by the dashed lin
endothelial shear stress; NC, necrotic core. Reproduced with permission fr
and their relevance to humans need to be further inves-

tigated. The rapid development (9 months) of coronary

atherosclerosis in pigs under severe hyperlipidemic

and diabetic conditions compared with the slower

(40–50 years) atherosclerotic progression in humans,

who may also start a lipid-lowering therapy at some point

in their lives, may limit the applicability of these findings

to a clinical setting in humans. However, the dynamic and

ongoing interplay of ESS with the local remodeling
rized reproduction of this article is prohibited.
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Figure 7 Association of persistently low endothelial shear

stress and excessive expansive remodeling with high-risk

plaques in an in-vivo serial study
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(a) Percentage of segments with low ESS (<1.2 Pa) over time in
segments that culminated in high-risk plaque at week 36, defined as
the combination of maxIMT greater than1.0 mm and excessive expansive
remodeling at week 36, vs. all other coronary segments. (b) Percentage
of segments with excessive expansive remodeling over time in segments
that culminated in high-risk plaque at week 36 vs. all other segments with
significant plaque (maxIMT�0.5 mm) at week 36. ESS, endothelial shear
stress; maxIMT, maximum intima-media thickness. Reproduced with
permission from [17�].
response to plaque formation and subsequent growth is

likely critical in determining the vascular pathobiology

of the lesion and the subsequent natural history of

the developing plaque [36]. Regions with persistently

low ESS and excessive expansive remodeling are

expected to culminate in plaques with the most marked

progression and high-risk characteristics (Fig. 7) [17�,65].

Both local ESS and the nature of vascular remodeling

may be of value in predicting the localization of high-risk

plaques. Integration of these variables into one predic-

tive risk score may also be useful to provide a screening

tool for risk-stratification of early individual lesions

[17�,66].
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Assessing in vivo the course of coronary
atherosclerosis: clinical implications
Early in-vivo assessment of CAD by coronary angiogra-

phy allowed visualization of the lumen only without

providing any knowledge about the vascular wall. Post-

mortem pathology studies [8], as well as investigations

with imaging modalities (IVUS in particular), led to the

appreciation that the development, progression and

stability of plaques within the arterial wall characterize

the disease’s natural history. Although baseline and

follow-up (i.e., at two time points) measurements capture

serial changes in plaque progression and regression, and

the corresponding remodeling response, the complexity

of the natural history of coronary atherosclerosis is

likely to include continuous changes of the remodeling

phenomenon over time. Optimal understanding of the

long-term natural history of CAD likely necessitates

in-vivo assessments at multiple (i.e., more than two) time

points [17�].

Detailed combined knowledge of the local hemodynamic

environment and remodeling behavior of coronary arter-

ial regions is likely to be essential for risk-stratification

and prognostication. Catheter-based approaches using

angiography and IVUS have been exclusively applied

until now for vascular profiling of coronary arteries in

patient series and have provided accurate assessments

of mid-term (6–12 months) serial changes in wall

morphology (i.e., plaque growth and vascular remodeling

pattern) and their association with the hemodynamic

environment [67]. A natural history clinical study (the

PREDICTION trial) is currently under way to explore

the predictive value of ESS and vascular remodeling in

identifying sites of plaque progression and rupture.

Incorporation of a combined assessment of ESS and

vascular remodeling into clinical practice as a wide-scale

screening tool would be facilitated by the development

of noninvasive techniques, and recent work on the use of

computed tomography angiography (CTA) for this pur-

pose has provided promising results [68�,69�,70]. Further-

more, latest advances in molecular imaging are now

enabling noninvasive in-vivo imaging of the pathophy-

siology of atherosclerosis [71�]. Stand-alone (e.g., MRI) or

hybrid [e.g., positron emission tomography (PET)

coupled with CTA] techniques using novel nanoparticles

and agents can be used to trace regions of intense

inflammation, macrophage trafficking, endothelial acti-

vation or protease activity [72] and possibly predict

culprit lesions of subsequent acute events. First-in-

human applications demonstrate the great potential of

this emerging field in providing measures of plaque

vulnerability in coronary arteries [73,74��] and indicate

the need for intensifying the technological efforts to

improve the resolution and quantitative accuracy of such
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techniques, especially for imaging the coronary arterial

tree.

The realization of the goal to predict the subsequent

natural history of atherosclerotic regions and to charac-

terize early high-risk plaques may ultimately enable the

development of therapeutic strategies to reduce vascular

risk before clinical events occur. Aggressive systemic

treatments (e.g., statins and angiotensin II receptor

blockers), proven to influence the remodeling behavior

and slow down or reverse plaque progression and vulner-

ability [75��,76��], could be adopted even among low-risk

profile patients according to current criteria. Highly

selective, prophylactic local interventions, such as

implantation of bio-absorbable stents [77��,78�] or novel

stenting devices tailored to ‘shield’ vulnerable plaques

[79�], could also be justified if they were proven to be safe

and more effective in reducing future events than the

best available systemic medical therapy.
Conclusion
Vascular remodeling is a critical component of the process

of plaque formation and progression and has an important

role in determining the complexity of the natural history

of atherosclerosis. A fine balance between matrix protein

degradation and synthesis influenced by inflammatory

and healing processes underlies the remodeling phenom-

enon in atherosclerotic arteries. ESS is a principal deter-

minant of the localization of atherosclerotic plaques

and the heterogeneity of the remodeling phenomenon,

largely by driving the extent of vascular inflammation

and expansion. The dynamic interplay of ESS with the

local remodeling response to plaque formation, and sub-

sequent growth, is critical in determining the vascular

pathobiology of the lesion and the subsequent natural

history of the developing plaque. Regions with extremely

low ESS and excessive expansive remodeling culminate

in large high-risk plaques. Incorporation of noninvasive

in-vivo serial ESS measurements complemented by mol-

ecular imaging into clinical practice could provide a more

complete diagnostic approach to assess the likelihood of a

particular atherosclerotic lesion to evolve into a thin cap

fibroatheroma prone to rupture and precipitation of an

acute coronary syndrome or to evolve to a more fibropro-

liferative phenotype causing lumen obstruction and

stable angina. Once the risk-stratification of individual

lesions becomes feasible, the value of local prophylactic

interventions in preventing future cardiac events can be

investigated in large randomized trials.
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