
factors in this group, or on untargeted preventive measures. Whatever
the reason, this phenomenon must be monitored and fast changes in
lifestyles (diet, smoking, physical activity) should be induced.
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We present a methodology for a safe, accurate, direct and rapid
assessment of coronary stiffness and endothelial shear stress (ESS)
with the use of multislice computed tomography. We report a
positive correlation between coronary stiffness and ESS, which is a
novel finding adding a new perspective to the already known
interplay between ESS and plaque progression. High-volume plaques
are located in arterial regionswith low ESS and are less stiff compared

to low-volume plaques, while non-stenotic plaques have lower
stiffness than stenotic ones. Also, this is the first study to show that
normal regions in the immediate proximity to plaques (≤2 mm) are
less stiff and have lower ESS compared to normal segments located
elsewhere. Coronary stiffness may potentially be a novel surrogate
marker to characterize atherosclerotic plaque progression and
vulnerability.

ESS is amajor factor affecting atherosclerosis [1,2] as it determines
the individual progression rate of any lesion [3]. Its calculation
typically requires a three-dimensional (3D) coronary artery recon-
struction by fusing intravascular ultrasound and coronary angiogra-
phy [3–7]. However, these are both invasive procedures and embrace
specific patient risks [8]. Novel non-invasive methods for 3D
coronary imaging as multislice computed tomography (MSCT) [9]
warrant diminished risks of adverse events and may be more widely
applicable.

In vascular physiology, stiffness reflects the rigidity of the arterial
wall [10]. During atherosclerotic plaque growth, the coronaries sustain
qualitative and quantitative changes which result in gradual wall
stiffening [11]. Stiffness is an emerging independent risk factor for
coronary disease [12,13], as it is proposed to interplay with local ESS
accentuating flow conditions which favor atherosclerosis [2].

We non-invasively studied the effects of coronary stiffness on
ESS and atherosclerosis in 10 subjects (9 males, mean age 60.6±
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3.4 years) undergoing cardiac MSCT (128-slice, SIEMENS, SOMATOM
Definition AS+) for evaluation of suspected coronary artery disease.
Blood pressure was measured with an arm-band sphygmoman-
ometer prior to MSCT. The examination took place in a single breath
hold and the images were ECG-gated. All participants provided
written informed consent.

The coronary arteries were 3D reconstructed with use of MIMICS®
v13.1 (Materialise NV, Leuven, Belgium). The lumen was reconstructed
in both systole and diastole based on the ECG, whereas the arterial wall
was reconstructed only in diastole (Fig. 1).

A computational grid was applied in each vessel (Gambit®, Fluent
Inc Products, Lebanon, NH, USA) and was subsequently imported to
computational fluid dynamics software (Fluent®, Fluent Inc Products,
Lebanon, NH, USA). ESS and wall pressure were estimated in diastole
and systole (Fig. 2). Each artery was divided in 2 mm-long segments
(Rhinoceros® v4.0 McNeel and Associates, Seattle, WA, USA) (Fig. 3).
Mean ESS and meanwall pressure were calculated in each segment in
both cardiac phases using Matlab® (The MathWorks Inc, Natick, MA,
USA).

Segments were further classified as diseased (apparent athero-
matic lesions or wall thickening) and non-diseased (controls), and
also in low- and high-ESS groups, the cut-off being 1 Pascal (Pa) in
diastole. Lumen area and wall volume were measured in each
segment. We considered the wall volume to represent plaque. Using

themedian volume (14.08 mm3) as cut-off, the plaques were assigned
to high- and low-volume groups.

Arterial remodeling was assessed by calculating % luminal
stenosis (% Stenosis) and using the mean of cross-sectional areas at
the beginning (Sproximal) and end (Sdistal) of each plaque as reference
(Fig. 4)

%Stenosis =
Sreference−Slesion

Sreference
=

Sproximal + Sdistal
2 −Slesion

Sproximal + Sdistal
2

=
Sproximal + Sdistal−2 × Slesion

Sproximal + Sdistal

where Sreference is the reference area and Slesion theminimum lumen area
in cases where lesion area was smaller than Sreference or the maximum
lumen area in the cases where lesion areawas larger than Sreference. As of
this definition, negative values for % Stenosis denote luminal dilatation.
Stenotic was considered for plaques causing % Stenosis ≥25% whereas
non-stenotic for those with values b25% or with luminal dilatation.

Coronary stiffness was computed in each segment using the
formula

Stiffness =
ΔP × V
ΔV

where ΔP is the mean wall pressure change, ΔV the volume change
from diastole to systole, and V the systolic volume [10].

Fig. 1. Three-dimensional left anterior descending artery reconstruction, where both
wall and lumen are visible.

Fig. 2. Wall pressure and endothelial shear stress in the left anterior descending artery, calculated using computational fluid dynamics. Values are in Pascals.

Fig. 3. Division of an artery in 2 mm-long segments.
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The statistical analyses were performed using SPSS, version 17.0
(SPSS Inc, Chicago, IL, USA).

MSCT was performed in 6 left anterior descending arteries and 4
right coronary arteries. The average arterial length was 64 mm. There
were 320 segments identified; 108 diseased and 212 non-diseased
(Tables 1 and 2).

The stiffness of low-ESS segments was significantly smaller than
that of high-ESS segments [median 57.8 interquartile range (IQR) 36.4
to 93.4 mm Hg vs. median 81.0 IQR 47.9 to 127.5 mm Hg, pb0.01].
High-volume plaques were prone to occur in low-ESS regions [odds
ratio (OR) 2.29, 95% confidence intervals (CI) from 1.08 to 4.86,
pb0.05] and were less stiff compared to low-volume plaques (median
52.5 IQR 36.9 to 101.9 mm Hg vs. median 83.1 IQR 38.5 to
166.2 mm Hg, pb0.01). Non-stenotic plaques had also reduced
stiffness compared to stenotic ones (median 50.2 IQR 32.7 to
90.9 mm Hg vs median 134.6 IQR 79.2 to 218.7 mm Hg, pb0.001).
Atherosclerosis-free regions immediate (≤2 mm) and proximal to
plaques (toward the ostium) tended to be less stiff (median 60.2 IQR
35.7 to 84.4 mmHg vs median 81.2 IQR 51.5 to 143.3 mm Hg, p=0.08)
and have lower ESS (median 0.85 IQR 0.60 to 1.44 Pa vsmedian 1.39 IQR
0.87 to 1.92 Pa, p=0.06) compared to the remaining normal segments.

These data show that atheromatic lesions with reduced wall
stiffness have lower ESS than areas with increased stiffness. Also,
high-volume plaques are located in regions with lower ESS and are
less stiff compared to low-volume plaques. Our study suggests that

atheromatic lesions characterized by lower ESS and reduced stiffness
accommodate high-volume plaques, where lipid-rich core likely
prevails, but the lumen is preserved. On the other hand increased
stiffness is noted in low-volume but stenotic plaques, where fibrous
tissue and/or calcium are probably the major components.

Based on the above findings one could speculate that plaques with
decreased stiffness are associated with certain features of vulnerability,
these being increased volume, decreased luminal obstruction and low
ESS. Decreased stiffness may have a common pathophysiologic basis
with plaque vulnerability with extracellular matrix degradation being a
common feature in both cases [14–16]. Vulnerable plaques are usually
minimally stenotic and associated with expansive remodeling, char-
acterized by a thin fibrous cap and a large necrotic lipid core, while low
ESS has been found to be an independent predictor [1].

Normal segments proximal and contiguous to plaques tended to be
less stiff and have lower ESS compared to the remaining normal
segments, suggesting that regions close to plaques are susceptible to
atherosclerosis. This concept may have potential implications in the
optimal stent size selection in cases of percutaneous coronary
intervention. This finding implies that in an earlier stage of
atherosclerosis prior to intimal thickening, the coronary wall already
exhibits structural changes reflected in decreased stiffness, and this
may be the first marker of vascular pathology in these regions.

This work was funded by the Hellenic State Scholarships Foundation,
Athens, Greece.
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Table 1
Study patient characteristics.

Demographics/clinical characteristics
Patients (n) 10
Age (years) 60.6 (43–77)
Males 9
Body mass index (kg/m2) 27.35 (24.6–38.2)
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Positive family history 4 (40%)

Exercise (n) 4 (40%)
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Teacher of martial arts 1 (10%)

Medication (n)
Statins 5 (50%)
ω3-fatty acids 2 (20%)
Beta-blockers 2 (20%)
Calcium antagonists 3 (30%)
Angiotensin converting enzyme inhibitors 3 (30%)
Diuretics 4 (40%)
Angiotensin ΙΙ receptor blockers 1 (10%)
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