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Finite Element Analysis of the
Implantation of a Self-Expanding
Stent: Impact of Lesion
Calcification
In this work, the deployment of a self-expanding stent in a stenosed artery was evaluated
through finite element analysis. The three-layered structure of the artery and their mate-
rial properties were measured and implemented in our computational models. The instant
outcomes, including lumen gain, tissue prolapse, and stress distribution, were quantified,
and the effect of plaque calcification was evaluated. Results showed that the peak wall
stress occurred on the media layer regardless of plaque calcification. The calcified pla-
que mitigated the tissue prolapse and arterial wall stresses in general, compared with the
soft plaque. However, the lesion calcification led to a more severe residual stenosis, dog-
boning effect, and corresponding edge stress concentrations after stenting, which
requires pre- and/or post-surgical management. [DOI: 10.1115/1.4006357]

Keywords: self-expanding stent, nitinol, layered artery, calcified plaque, stent-artery
interaction, finite element method

1 Introduction

Self-expanding Nitinol stents were designed to better withstand
the multi-axial dynamic loadings found in the peripheral arteries.
They have demonstrated improved 1-year freedom from resteno-
sis after their implantations into stenosed superficial femoral
artery (SFA) than percutaneous transluminal angioplasty (PTA)
alone, especially for longer lesions [1–3]. However, the calcifica-
tion of plaque will lower the success rate of stenting in peripheral
artery. It has been speculated that wall stress concentration was
associated with the occurrence of restenosis [4]. Many physical
parameters influence the wall stress distributions, such as dynam-
ics of expansion, stent design, geometry, and properties of tissue,
including artery and plaque [5,6].

The finite element method has been widely used to study the
stent expansion and stent-artery interaction, but most documented
studies focused on balloon-expandable stents [7–10]. It was worth
noting that Early et al. studied the deployment of balloon-
expandable stent subjected to bending found in the peripheral
artery [11]. The self-expanding Nitinol stent, with its unique
superelastic characteristics and improved clinical outcomes in
SFA is drawing more attention on the modeling of its expansion
and interaction with artery [12–15]. However, the shape of plaque
was usually simplified or not included at all. For example, Harvey
simulated the deployment of Nitinol stent in a realistic human pe-
ripheral artery subjected to pulsatile loading conditions, without
considering the existence of plaque [12].

In this study, a PROTÉGÉTM GPSTM self-expanding Nitinol
stent was deployed into a stenosed artery and the immediate out-
come of stenting was quantified through finite element analysis.
The material properties of the artery were measured in each of its
three layers (intima, media, and adventitia). The stent dogboning
effect, tissue prolapse, lumen gain, and arterial stress distribution
were evaluated. The effect of lesion calcification was assessed.

2 Materials and Methods

A three-layered artery with a length of 30 mm, inner diameter
of 9 mm, and total wall thickness of 1 mm was considered
(Fig. 1). The thickness ratio of intima/media/adventitia was 1/6/3
adapted from the observations of Schulze-Bauer et al. [16]. A
16 mm-long eccentric plaque caused a 50% stenosis. The eccen-
tricity, defined as the maximum ratio of the thickness at the
narrowest occlusion, was 2. A PROTÉGÉTM GPSTM self-
expanding Nitinol stent (ev3 Inc., Plymouth, MN), which is
shown in Fig. 1, was deployed in the stenosed artery to improve
the lumen size and restore the blood flow. The stent is composed
of 18 units along the circumferential direction and 9 units along
the axial direction and has a nominal diameter of 10 mm, length
of 20 mm, and strut thickness of 0.22 mm. The stent was initially
confined inside a sheath at the tip of the catheter and delivered to
the target lesion. Then it self-expanded to compress the lesion and
regained the lumen after the removal of the sheath.

The GPSTM stent was meshed into 7248 beam elements (B31),
which account for large axial deformation as well as transverse
shear deformation. The use of beam elements in stenting simula-
tion has been validated through experiments by Kim et al. [17].
The sheath was represented by 26 reduced-integration shell
elements (S4R). The artery and plaque were discretized into
43,687 and 13,122 reduced-integration eight-node brick elements
(C3D8R), respectively.

The GPSTM stent is made of Nitinol, a superelastic material
with phase transformation between austenite phase and martensite
phase (Fig. 2). The material properties, adopted from the testing
data from unspecified Nitinol stent [15], were implemented in the
ABAQUS (Dassault Systèmes Simulia Corp., Providence, RI)
user material subroutine (VUMAT).

Both artery and plaque were modeled as isotropic hyper-
elastic material through a polynomial strain energy potential func-
tion as

U ¼
XN

iþj¼1

CijðI1 � 3ÞiðI2 � 3Þj
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where Cij are material coefficients determined from the experi-
mental data, while I1 and I2 are the first and second invariant of
the Cauchy-Green tensor in terms of principal stretch ratios ki as

I1 ¼ k2
1 þ k2

2 þ k2
3; I2 ¼ k�2

1 þ k�2
2 þ k�2

3

Axial and circumferential strips of the intima, media, and adventi-
tia layer of the human aorta were obtained from a 9 mm
CryoValve

VR

aortic valve allograft (CryoLife Inc., Kennesaw,
GA). After the separation of three layers, three test specimens per
layer were obtained for circumferential tensile testing. For the

axial direction, only one strip of intima was appropriate to be
tested, three and two strips were obtained for the media and
adventitia layer, respectively. Preconditioning up to a strain of
0.35 [18] was used to establish a steady mechanical response in
each layer of the aorta. The invariant-based constitutive function
described above was used to fit the averaged test data for each
layer along the circumferential direction. The obtained material
coefficients were listed in Table 1. To study the effect of plaque
calcification on the performance of stenting, two stages of
plaques were adopted from the publications [6,19] and added to
the Table 1. The material properties of both the artery and plaque
were plotted in the Fig. 3.

Uniform displacement boundary condition was used to crimp
the GPSTM stent into the sheath. After the stent reached the target
lesion, a linear ramping velocity of 4 m/s was applied onto the
sheath to release the self-expanding stent. The general contact
algorithm with a friction coefficient of 0.15 was applied among
stent, stenosed artery, and sheath.

3 Results

The combination of arterial wall stretching and plaque com-
pression is the main factor leading to the lumen gain after stenting
[20,21]. After the GPSTM stent self-expanded in an artery with a
soft plaque, the arterial diameter was stretched from 9 mm to
11.18 mm, while the plaque was compressed by 0.92 mm in total
thickness at the narrowest occlusion, as shown in Fig. 4. The mini-
mum lumen diameter was then increased from 4.50 mm to
7.60 mm, which corresponded to an instant lumen gain of
3.10 mm and a residual stenosis of 15.56%. The arterial stretch,
measured as the difference between the minimum arterial diameter

Fig. 1 Computational model of a GPSTM stent, confined inside a sheath, inside a stenosed artery (top), photos of
the GPSTM stent loaded in the tip of catheter and then self-expanded after the sheath removal (bottom)

Fig. 2 The stress-driven superelastic behavior of Nitinol

Table 1 Hyperelastic material coefficients for both artery and plaque

C10 (MPa) C01 (MPa) C11 (MPa) C20 (MPa) C02 (MPa) C30 (MPa) C03 (MPa)

Artery
Intima 0.02412 0.03413
Media 0.03828 0.01885 0.02067
Adventitia 0.02962 �0.00676 0.01950

Soft plaque [19] 0.04 0.003 0.02976
Calcified plaque [6] �0.49596 0.50661 1.19353 3.6378 4.73725

021001-2 / Vol. 6, JUNE 2012 Transactions of the ASME



before stenting and after stenting, contributed to 70.32% of instant
lumen gain. For a calcified plaque, the arterial stretch and plaque
compression reduced significantly. The arterial stretch was
0.93 mm, corresponding to a 10% diametric variation. The plaque
compression was only 0.03 mm in total thickness, compared with
the 0.92 mm for the soft plaque. The plaque compression only
accounted for 3% of the diametric lumen gain. The 39.33% resid-
ual stenosis existed immediately after stent deployment due to the
lesion calcification, which did not satisfy the desired residual ste-
nosis standard of 30% or less [22,23]. A pre- or post-dilation of
calcified plaque is necessary to achieve a larger lumen gain and a
corresponding less residual stenosis.

Due to the mesh configuration of the stent, tissue prolapsed in
open space between struts. The tissue prolapse was quantified as
the difference between the radial displacement of one point on the
tissue surface and the maximum radial displacement of tissue sur-
face bounded by two adjacent struts. The peak tissue prolapse
occurred around the most stenotic region, along the dotted line
highlighted in Fig. 4. The circumferential variations of the tissue
prolapse depend on the open strut design, the thickness, and mate-
rial properties of the plaque. Figure 5 compared the prolapse of
stented artery along the dotted line for both soft and calcified pla-
que. There are total six struts along the whole dotted circle. The
starting angular position (0�) corresponded to the strut location
closest to thinnest edge of plaque, as shown in the cross-section
view in Fig. 5. The maximum prolapse occurred around the fifth
strut close to the thickest edge of plaque, same location for both
plaque types. The maximum tissue prolapse is 0.227 mm for
stented soft plaque, compared with 0.204 mm for calcified plaque.

It is also clear that the self-expanding GPSTM stent conformed
to the lesion geometry and exhibited a dogbone shape with a
larger size at distal ends than at the center, as shown in Fig. 4. The

diameter at the center of the stent was 7.62 mm, while the distal
diameters were 9.96 mm and 10.05 mm, respectively. The dog-
boning effect was more pronounced in the calcified plaque as
listed in the Table 2. Dogboning factor, defined as the relative dif-
ference between the central diameter and the average diameter at
two ends, was 23.84% for the soft plaque, compared with 48.38%
for the calcified plaque. Due to the incomplete expansion, the
stent length was 21.68 mm immediately after stenting calcified
plaque, which was longer than its nominal length of 20 mm. It is
worth noting that the proximal end was slightly smaller than the
distal end. This could be explained by the longer span between the
edge of the plaque and the stent end at the proximal site.

The dogbone shape of the stent might cause arterial wall stress
concentrations at the ends of the stent. Figure 6 has depicted the
wall stress distributions on each layer of the artery for both soft
and calcified plaque cases. The arterial stress concentration was
obviously higher especially at the central region of the lesion for
the soft plaque case, whereas edge stress concentration was more
intense for the calcified plaque. This might be explained by the
deformability of the plaque. Less deformation in the calcified pla-
que led to a pronounced dogbone shape of the stent and thus
caused poking at both stent extremities, which might dissect the
arterial wall, lead to restenosis, or fracture of the stent [24]. The
maximum principal stress of 0.101 MPa was found on the central
section of the media layer underneath the thin side of soft plaque;
however, for the calcified plaque case, the peak principal stress
was found on the medial layer underlying the stent end, and the
magnitude was reduced to 0.075 MPa. For different arterial layers,
the media was subjected to relatively high stresses in all cases,
serving as load bearing components, and adventitia undertook the

Fig. 4 The stented artery with soft plaque (cut view)
Fig. 5 The peak tissue prolapse distribution (top) located at
central region of the plaque, and the cross section view
(bottom)

Fig. 3 Stress-stretch relationships for both artery and plaque

Journal of Medical Devices JUNE 2012, Vol. 6 / 021001-3



lowest stresses. The percentage of intimal volume where the max-
imum principal stress exceeds 0.06 MPa, the physiological stress
level [25], was 16.21% in the case of soft plaque, compared with
0.02% in the case of calcified plaque. The percentage of media
volume exceeding the stress level of 0.06 MPa was 22.09% in the
case of soft plaque, compared with 0.67% in the case of calcified
plaque. This might be explained by that calcified lesion absorbed
more energy and protected the host artery.

4 Discussions and Conclusions

Self-expanding stents usually have less radial stiffness and do
not reach their nominal dimentions immediately after their
deployment [26]. It is considered as a successful procedure if the
immediate residual stenosis is less than 30% [22,23]. This will not
be easy for stenting a calcified plaque without pre- or post-
dilation. Our results have demonstrated that a calcified lesion is
hard to be reshaped, which affects the outcome of stenting. This
agrees with the documented clinical observation [27], which states
that full expansion of the stent, especially the central region, is
most pronounced in artery with soft lesion, and least pronounced
in artery with calcified plaques.

Our results have shown that tissue stiffness is inversely propor-
tional to the tissue prolapse. Larger prolapse occurred in the stent-

ing of soft lesion, which could reduce lumen gain and disrupt the
flow dynamics leading to the occurrence of restenosis [28,29] or
embolization [30]. Calcified lesion stenting induced less tissue
prolapse, which may slightly remedy for the acute lumen gain. In
summary, the efficiency of stenting to restore blood flow depends
on the combination of plaque compression, arterial stretch, and
tissue prolapse.

In our work, the incomplete expansion of self-expanding
Nitinol stent exhibited a dogbone shape even for the soft plaque,
which is attributed to the plaque shape and properties [31] and rel-
atively lower radial scaffolding ability of Nitinol material [14].
This may be compensated by the plateaulike superelasticity of
Nitinol, which allows for a late continuous expansion until the
stent reaches its nominal dimension [32]. This speculation of late
expansion has been validated by clinical studies [33–35], which
showed that the continued expansion of a Nitinol stent mitigated
its initial incomplete expansion. Clinical observations by Lownie
et al. reported that the minimal late expansion occurred on
calcified plaque [34]. This can be explained by the stiffness of a
calcified lesion.

The dogbone shape of the stent poked into the arterial wall and
induced stress concentrations at the ends of the stent. Local stress
concentrations may initiate the neointimal proliferation or edge
dissection and increase the risk of complication [36–38]. The

Table 2 The Deployed GPSTM Stent Dimension

Type of plaque Central diameter Proximal diameter Distal diameter Dogboning

Soft 7.62 mm 9.96 mm 10.05 mm 23.84%
Calcified 5.42 mm 10.34 mm 10.66 mm 48.38%

Fig. 6 Stent induced maximum principal stress map on the intima (top), media (middle), and
adventitia (bottom) layer of the artery with soft plaque (left) and calcified one (right)

021001-4 / Vol. 6, JUNE 2012 Transactions of the ASME



incomplete expansion of the Nitinol stent led to a larger stress
concentration at the ends of stents deployed in the artery with cal-
cified plaque. This indicates a higher risk to dissect the arterial
wall, leading to restenosis or fracture of the stent [24]. The geo-
metrical discontinuity between plaque and artery at the plaque
ends will aggravate the arterial stress concentrations as demon-
strated in our previous work [39]. Except the above mentioned
stent end regions, the wall stress distribution at each layer of the
artery demonstrated a lower arterial stress profile when plaques
were calcified. This is due to the large stiffness of the calcified
lesion, which could absorb more transmitted energy with a small
amount of deformation. It indicates that the stiffer lesion protected
the host artery through mitigating the arterial stress and the occur-
rence of neointimal hyperplasia accordingly [11]. Our specula-
tions on the influence of lesion calcification agrees with the
clinical observations such that less neointimal hyperplasia was
found on calcified plaque compared with the soft one [40]. De-
spite the mitigation of arterial stress by the calcified plaque, the
desired lumen gain with minimal dogboning after stenting calci-
fied lesion requires pre- and/or post-surgical management [27].

5 Limitations

In this work, the expansion of a self-expanding GPSTM stent
and its interaction with diseased lesion was quantified to under-
stand the impact of plaque calcification on stenting outcomes. The
self-expanding behavior of the GPSTMstent was obtained through
implementing the material properties of Nitinol material. The
three-layered structure of the artery was considered in our model.
However, each layer was assumed as the uniform thickness. Calci-
fication morphology and size such as a combination of soft and
calcified plaque vary in the patient population. The patient-
specific artery with plaque composition will cause variation on the
stress distribution and stent-artery interaction in terms of arterial
stretch, lesion damage, tissue prolapse, and dogboning effect. For
example, a calcified plaque cap combined with lipid pool could
lead to stress concentration in the cap itself, especially at the
shoulder location [41]. Moreover, the main damage mechanism of
calcified plaque is rupture [42], which will be included in our
future studies. The adopted Nitinol properties in this work were
based on the test data from unspecified Nitinol stents [15]. The
temperature-driven shape memory properties of Nitinol were not
considered in this work. The variation in the Nitinol material
properties, if any, will lead to the altered absolute value presented
in this work, not the qualitative trend analysis.

Aortic allograft samples were characterized in this work, which
is softer than the human peripheral vessel specimens [42]. Consid-
ering the inherent variation in tissue properties, as well as the
comparative nature of this work, the material properties obtained
in this work can be justified to study the effect of plaque
calcification.
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