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On the Importance of Modeling
Stent Procedure for Predicting
Arterial Mechanics
The stent-artery interactions have been increasingly studied using the finite element
method for better understanding of the biomechanical environment changes on the artery
and its implications. However, the deployment of balloon-expandable stents was gener-
ally simplified without considering the balloon-stent interactions, the initial crimping
process of the stent, its overexpansion routinely used in the clinical practice, or its recoil
process. In this work, the stenting procedure was mimicked by incorporating all the
above-mentioned simplifications. The impact of various simplifications on the stent-
induced arterial stresses was systematically investigated. The plastic strain history of
stent and its resulted geometrical variations, as well as arterial mechanics were quanti-
fied and compared. Results showed the model without considering the stent crimping pro-
cess underestimating the minimum stent diameter by 17.2%, and overestimating the
maximum radial recoil by 144%. It was also suggested that overexpansion resulted in a
larger stent diameter, but a greater radial recoil ratio and larger intimal area with high
stress were also obtained along with the increase in degree of overexpansion.
[DOI: 10.1115/1.4023094]

Keywords: balloon-expandable stent, interface, crimping, overexpansion, recoil, model-
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1 Introduction

Stents have been widely used to treat arterial occlusions by
mechanically enlarging the blocked artery and restoring blood
flow. Balloon-expandable stents are required to be crimped onto
the balloon catheters forming a low profile for efficient delivery.
When the catheter is advanced to the blocked artery, the balloon
is inflated to plastically deform the stent to expand the occluded
vessel outwards. The stent will stay in place to support the
blocked artery, while the balloon is deflated and withdrawn with
the catheter. It is acknowledged that stent implantation induced
abnormal arterial stretches and stresses, which stimulates and
injures the vessel wall, leading to the in-stent restenosis, a major
complication of stenting [1–4]. In order to optimize the stent
design to alleviate the arterial stress concentrations and its result-
ing complications, it is vital to better predict the biomechanics of
a stented artery.

Finite element analysis has been proven as an efficient tool to
investigate the mechanics at the interface among the balloon,
stent, and stenotic artery [5–9]. However, the existing modeling
of balloon-expandable stents was generally simplified without
considering the balloon-stent interactions, the initial crimping
process of the stent, its overexpansion routinely used in the clini-
cal practice, or/and its recoil process. The main objective of this
work is to systematically study the impact of the above-
mentioned simplifications on the stented artery. The obtained
results will provide a better understanding of the physics of bal-
loon-stent-artery interactions with respect to changes in modeling
techniques.

2 Methods

The three-dimensional model of the stenting process was devel-
oped in the commercial finite element code ABAQUS (Dassault
Systèmes Simulia Corp., Providence, RI, USA), as depicted in
Fig. 1. The commercial express stent (Boston Scientific, Natick,
MA, USA) was implanted into a coronary artery with lumen di-
ameter of 3 mm, wall thickness of 0.75 mm, and length of 26 mm
[10, 11]. The asymmetric plaque has a parabolic longitudinal pro-
file with a length of 13 mm. An edge ratio of 2: 1 at the narrowest
occlusion leads to the lumen diameter of 1.5 mm, which is 50% of
the reference lumen, referred to as 50% stenosis. The stent was
first crimped from its nominal diameter of 3.0 mm onto the bal-
loon with a crimped diameter of 1.2 mm and a length of 17 mm.
Then it was balloon-expanded back to its original nominal diame-
ter. When the balloon withdrew, the stent recoiled back. Both the
stent crimping and expansion were achieved by applying uniform
displacements onto the crimper and balloon, respectively.

2.1 Material Models. The express stent is made of 316LN
stainless steel, whose mechanical behavior was described as the
perfect linear elastic-plastic material. The corresponding material
parameters are Young’s modulus E¼ 190 GPa, Poisson’s ratio
�¼ 0.3, and yield stress rY¼ 207 MPa.

The arterial wall was tested as an isotropic hyperelastic mate-
rial, while the plaque was modeled using the isotropic
hyperelastic-plastic constitutive equation (Fig. 2). The hyperelas-
tic material was described by a third-order polynomial strain
energy density function U as

U ¼
X3

iþj¼1

CijðI1 � 3ÞiðI2 � 3Þj

where the I1 and I2 are the first and second invariants of the
Cauchy-Green tensor, defined as I1 ¼ k2

1 þ k2
2 þ k2

3 and
I2 ¼ k�2

1 þ k�2
2 þ k�2

3 , where ki are the principal stretches. Cij are
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material coefficients determined by fitting the experimental stress-
strain data. The material coefficients for arterial wall, C10¼ 0.014
881 MPa, C20¼ 0.014 920 MPa, and C30¼ 0.000 939 34 MPa,
were obtained from our previous test data [12]. The material
coefficients for the hyperelastic plaque, C10¼ 0.04 MPa,
C02¼ 0.003 MPa, and C03¼ 0.02976 MPa, were adopted from
published data [13,14]. The perfect plastic model was used to
describe the permanent deformation of the plaque, which is neces-
sary for modeling the stent recoil process [9]. The plasticity was
assumed to initiate at 34% strain [15], corresponding to a calcu-
lated stress level of 0.07 MPa as shown in Fig. 2.

2.2 Mesh and Boundary Conditions. The stent was meshed
with 4-node general shell elements S4R, which has been validated
by Avdeev et al. [16]. Reduced 8-node brick elements C3D8R
were used for the plaque and artery. The element sizes of 0.12 mm
and 0.14 mm for plaque and artery, respectively, were adopted

based on the mesh convergence study. The two ends of the artery
were constrained as symmetrical planes. A general contact algo-
rithm was used for all the contact pairs. A friction coefficient of
0.05 was adopted at the tissue-stent interface based on the meas-
urements conducted by Dunn et al. [17].

3 Results

The full stenting process, including stent crimping, balloon expan-
sion at the diseased lesion site, and its recoil with the deflation of bal-
loon, was simulated as the baseline data. The effects of stent crimping
and overexpansion on the stented artery were then evaluated.

3.1 The Stent Behavior: From Crimping to Recoil. The
stent was first uniformly crimped from its nominal diameter of
3 mm to a small profile of 1.2 mm, and the stent length was
increased from 15.74 to 16.01 mm. After delivery to the target
lesion, the stent was then expanded uniformly to 3.39 mm, which
is 13% larger than its nominal diameter [18]. The deflation and
withdrawal of balloon catheter led to the stent recoil back with a
final length of 15.88 mm and diameters of 3.32, 3.03, and
3.31 mm at its proximal end, center, and distal end, respectively
(Table 1). It is obvious that the stent exhibited a dogbone shape
with smaller dimensions in the central zone. This is due to the par-
abolic plaque profile. The dogboning effect, defined as the relative
difference between the central diameter and the average diameter
at two ends, was calculated as 8.60%. In addition, the foreshorten-
ing of the stent, which is defined as the change in its axial length
during the expansion, was evaluated as 0.81%. The radial recoils
were calculated as 2.06%, 10.62%, and 2.36% at its proximal end,
center, and distal end, respectively.

From the crimping to the recoil of the balloon-expandable stent,
large irreversible plastic deformation was induced, which deter-
mined the scaffolding performance of the stent. The equivalent
plastic strain (PEEQ) history at one specific location, with the
peak PEEQ after full expansion, was plotted in Fig. 3. It is clear
that the PEEQ was accumulated from the crimping until the full
expansion of the stent, and then kept as a plateau during the recoil
process. The contour plot of the PEEQ in Fig. 4 shows that the
PEEQ concentrated around the curved crowns of the stent, whose

Fig. 1 The three-dimensional model of the complete stenting system before expan-
sion: nominal state (top), crimped state (middle), and delivery to target lesion (bottom)

Fig. 2 Mechanical behavior of artery and plaque

Table 1 Stent performance after being implanted in a 50% stenosed artery

Diameter (radial recoil 1� DUnload
location=DLoad

location)

Proximal end Center Distal end Dogboning 1� DCenter
DProximal þ DDistal

2

Foreshortening 1� lfinal=lcrimped

With
crimping

3.32 mm
(2.06%)

3.03 mm
(10.62%)

3.31 mm
(2.36%)

8.60% 0.81%

Without
crimping

2.80 mm
(17.40%)

2.51 mm
(25.96%)

2.78 mm
(17.99%)

10.04% 1.25%
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geometry parameters are the critical design factors for optimiza-
tion of stent scaffolding ability [19]. The PEEQ of the stent after
its full expansion was 30.25% at maximum, as shown in the Fig. 3,
while it was 13.65% after the crimping process at this location.
The maximum PEEQ after crimping was 15.67%, and occurred at
different locations of the stent. The percentage of the stent surface
with plastic deformation (PEEQ� 0.1%) after the crimping

process was 67.62%, while it was 82.90% after full expansion,
indicating a 22.60% relative increase.

3.2 The Arterial Mechanics. During the balloon-induced
stent expansion process, the stent pushed the lesion outwards and
resulted in abnormal stresses on the artery. The radial strength of
the stent, defined as the maximum contact pressure between the
stent and artery wall, was used to quantify the scaffolding capacity
of the stent, as well as the collapse resistance against the radial
compressive loads from the artery wall [19]. As the stent was fully
expanded to the diameter of 3.39 mm, the radial strength was
0.16 MPa, while it was reduced to 0.13 MPa after stent recoil.
This led to the similar observations for the peak principal stresses
on the artery, which was 118.6 kPa before the stent recoil, and
became 72.93 kPa after the recoil. The recoil process reduced the
peak arterial stress by 38.51%. The contact pressure map on the
plaque, as well as the maximum principal stress map on the artery
before and after stent recoil, were depicted in Figs. 5 and 6,
respectively. It is clear that the isostress contour maps before and
after the recoil process showed a similar pattern; even the stent
recoil alleviated the peak contact pressure, as well as the maxi-
mum principal stress. The probability distributions of maximum
principal stress on the inner surface of the artery before and after
stent recoil were plotted in Fig. 7. The most frequently occurring
stress before and after recoil appeared within the same range, and
the probability of this stress state increased after recoil. In con-
trast, the tail region of the least frequently occurring stress values
reduced after recoil, especially for stress values larger than

Fig. 3 The equivalent plastic strain (PEEQ) variation during
the stenting process

Fig. 4 The contour plot of the PEEQ of the stent unit at crimping state (left), fully
expanded state (middle), and equilibrium state after recoil (right)

Fig. 5 The contact pressure distribution on the plaque at the fully expanded state of the stent
(top) as well as after stent recoil (bottom)

Journal of Biomechanical Engineering DECEMBER 2012, Vol. 134 / 121005-3



80 kPa. It demonstrates that the stent recoil significantly altered
the peak stress component and the stress distributions.

3.3 Effect of Stent Overexpansion. The stent’s ability of
opening the occluded lumen is adversely affected by the radial
recoil; thus the stent is usually overexpanded by 10%–20% of the
reference lumen diameter to compensate for the elastic recoil of
the stent [18]. In the baseline model, the stent was overexpanded
by 13% of the reference lumen diameter, and then reached a cen-
ter diameter of 3.03 mm after recoil. To understand the effect of
stent overexpansion on the overall mechanical behavior of a stent,
the stent was expanded to 3.48 mm and 3.60 mm, i.e., overex-
panded by 16% and 20% of the reference lumen diameter. Results
have shown that the corresponding minimal diameters of the stent
after stent recoil were 3.08 mm and 3.15 mm, respectively. This
indicates that a greater degree of overexpansion leads to a larger
acute lumen gain. The effect of overexpansion on the percentage
of radial recoil, foreshortening as well as the PEEQ of stent were
quantified in Fig. 8. The three solid lines correspond to the per-
centage of recoil rate at various locations of the stent. The dashed
line represents the trend of maximum PEEQ in the stent, and the
dashed-dotted line denotes the foreshortening of the stent. It is
obvious that the percentage of radial recoil increased with a larger
overexpansion diameter, especially at the center location, which is
also the limiting lumen dimension. Meanwhile, the stent foreshort-
ening and the PEEQ also increased. All these characterizations of

stent are desired to be as small as possible to minimize the opera-
tional injury [20]. In addition, the most frequently occurring stress
was also within the same range, and the probability of this stress
state reduced with more overexpansion, as shown in Fig. 9. In
contrast, the tail region of higher stresses increased with a larger
frequency. The overexpansion resulted in a probability shift from
most frequently occurring stress to the tail region with larger
stresses on the intimal surface of the artery. The larger stress
region is generally correlated with the artery injury. This indicates
that the overexpansion is not desirable procedure even though it
leads to larger acute lumen gain and is routinely used in the clini-
cal practice.

3.4 Effect of Stent Crimping. Most of the numerical models
on the stenting process failed to consider the crimping phase of
the stent [21–23]. To evaluate the effect of stent crimping on its
performance, the above-mentioned stenting process was modified
to exclude the crimping phase, i.e., expand the stent from its
crimped profile as the original stress-free state. The remaining
process was kept the same as the baseline model. The minimum
stent diameter after recoil was 2.51 mm at its central section. The
corresponding recoil rate was calculated as 25.96%, which is
much greater than the recoil rate of 10.62% for the baseline case
considering the crimping phase. The stent behavior with and

Fig. 6 The maximum principal stress map on the artery at the fully expanded state of the stent
(top) as well as after stent recoil (bottom)

Fig. 7 The probability distribution of maximum principal
stress on the intima

Fig. 8 The impact of overexpansion on the radial recoil, fore-
shortening, as well as PEEQ of the stent

121005-4 / Vol. 134, DECEMBER 2012 Transactions of the ASME



without considering the crimping phase were compared and listed
in Table 1. It is clear that the final diameter of the stent is much
less without considering the crimping phase. The stent recoil rate,
dogboning effect, and its foreshortening increased, which are not
desirable. However, the maximum principal stresses on the artery
wall decreased significantly from 72.93 kPa in the case with the
crimping phase, to 32.49 kPa found in the case without the crimp-
ing phase. The peak PEEQ after recoil was 30.36% with the
crimping phase, in contrast to the 19.41% in the case without
crimping.

4 Discussion

In this work, the process of stent deployment, including crimp-
ing, expansion, and recoil phases, was systematically analyzed
using the finite element method. The stent was first crimped from
its nominal dimension onto the catheter by the radial compression
of a crimper. Then it was expanded by the displacement-
controlled balloon [22]. The adopted modeling techniques were
verified by our in vitro stent expansion test [3], as well as the
work by De Beule et al. [23] and Mortier et al. [24]. When the bal-
loon was deflated and withdrawn, the elasticity of the stent led to
its recoil, which formed the stent into a dogbone shape. Less
recoils were observed at two ends of the stent due to the less con-
straints as well as less loadings from the diseased lesion, which is
consistent with the observations by Zahedmanesh et al. [25]. The
calculated radial recoil ratios (Table 1) are within the reported
recoil range of 12 6 16% [26]. The plasticity of the stent was uti-
lized to sustain the in vivo loadings and serve as the scaffold to
hold the artery open. The maximum PEEQ on stent after crimping
is 15.67%, while it is 30.25% after full expansion of the stent. The
plastic strain concentrations occurred at the crown junction of the
stent appears to be related to the fracture of the stent [19, 27]. The
radial strength of the stent depends on the contact pressure at the
stent-lesion interface. Higher radial strength at the full expansion
of the stent led to a higher outwards contact pressure (Fig. 5), and
also the larger arterial stresses (Fig. 6). The elastic recoil of the
stent reduced its radial strength by 18.75%. However, smaller ra-
dial strength might lead to the migration of the stent [28]. In con-
trast, the recoil relieved the peak arterial stresses by 38.51% as
well as the percentage area of high stress (>80 kPa) by 10.14%
(Fig. 7), which is related to less vascular injury [6].

During the routine clinical operations, the stent is required to be
overexpanded to compensate for the elastic recoil and arterial
compression and reach a certain reference diameter of the lesion.
The overexpansion is currently done by trial and error method.
The extent of the overexpansion will affect the clinical outcomes

[29]. We observed that the overexpansion indeed led to the
increased lumen size. However, it also resulted in larger recoil,
foreshortening, overstretch of the arterial wall, relatively larger
probability in high stress range, as well as peak arterial stress,
which are not desirable due to their adverse effect on the vascular
injury. This trend contradicts the observation for the overexpan-
sion of bare metal stent [30], which indicates that the performance
of the stent is significantly affected by the interaction between the
stent and the diseased lesion. Therefore, the appropriate overex-
pansion diameter depends on the compromise between the mini-
mal lumen diameter and the arterial stress, etc. [31].

The crimping procedure also significantly affects the perform-
ance of the stent as well as its resulting arterial mechanics. Plastic
deformation of the stent is an accumulative process as shown in
Fig. 3. Neglecting the crimping procedure led to 36% reduction in
the maximum PEEQ, and thus relative larger elastic recoil. This
implied a smaller lumen diameter, less acute lumen gain, and less
arterial stresses on the artery wall. Our observations are in agree-
ment with the experimental work by Moller et al. [32], which has
also stated that the addition of the crimping phase induced a much
higher level of plastic deformation. It is then suggested that the
prediction of stenting behavior without considering the crimping
process might underestimate the stent performance of holding the
diseased lesion open.

This study systematically investigated the stent-artery interac-
tions to quantify the impact of stent overexpansion, crimping, as
well as elastic recoil on its performance. An increase in degree of
stent overexpansion was found to be capable of increasing the
final stent diameter, however, it resulted in larger stent recoil as
well as higher arterial stresses. The crimping process is necessary
for better surgical planning. A few simplifications were made in
this work, such as the displacement-controlled balloon expansion
technique, idealized artery and plaque geometry, the homogene-
ous isotropic constitutive model of the lesion, and no blood flow.
Although a detailed pressure-driven folded balloon technique
could provide better transient behavior of the stent, such as the
dogbone shape during the expansion process, it has minimal influ-
ence on the balloon-stent-artery interactions at the final state of
each phase [23]. A patient-specific geometrical model, fluid-
structure interaction, as well as considering the inherent anisot-
ropy and layer-specific properties of the lesion, will alter the mag-
nitude of the dogboning effect, recoil ratio, and arterial stress
distributions. However, considering the comparative essence of
this work, the impact of modeling techniques of the stenting pro-
cedure on the performance of the stent implantations was justified.
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