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a b s t r a c t 

Background and Objective: Intravascular optical coherence tomography (OCT) is an invaluable tool for the 

detection of pathological features on the arterial wall and the investigation of post-stenting complica- 

tions. Computational lumen border detection in OCT images is highly advantageous, since it may support 

rapid morphometric analysis. However, automatic detection is very challenging, since OCT images typ- 

ically include various artifacts that impact image clarity, including features such as side branches and 

intraluminal blood presence. This paper presents ARC –OCT, a segmentation method for fully-automatic 

detection of lumen border in OCT images. 

Methods: ARC –OCT relies on multiple, consecutive processing steps, accounting for image preparation, 

contour extraction and refinement. In particular, for contour extraction ARC –OCT employs the transfor- 

mation of OCT images based on physical characteristics such as reflectivity and absorption of the tissue 

and, for contour refinement, local regression using weighted linear least squares and a 2nd degree poly- 

nomial model is employed to achieve artifact and small-branch correction as well as smoothness of the 

artery mesh. Our major focus was to achieve accurate contour delineation in the various types of OCT 

images, i.e., even in challenging cases with branches and artifacts. 

Results: ARC –OCT has been assessed in a dataset of 1812 images (308 from stented and 1504 from native 

segments) obtained from 20 patients. ARC –OCT was compared against ground-truth manual segmenta- 

tion performed by experts on the basis of various geometric features (e.g. area, perimeter, radius, diam- 

eter, centroid, etc.) and closed contour matching indicators (the Dice index, the Hausdorff distance and 

the undirected average distance), using standard statistical analysis methods. The proposed method was 

proven very efficient and close to the ground-truth, exhibiting non statistically-significant differences for 

most of the examined metrics. 

Conclusions: ARC –OCT allows accurate and fully-automated lumen border detection in OCT images. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Intravascular optical coherence tomography (OCT) is an estab-

ished diagnostic tool that enables the visualization of the internal

spect of the coronary arteries with very high resolution [1] . It is

ighly accurate for the detection of features of coronary disease

nd the investigation of post-stenting complications [2] . 

http://dx.doi.org/10.1016/j.cmpb.2017.08.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
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OCT segmentation for lumen border detection is a key step in

the quantitative assessment of arterial morphology [3,4] . Manual

tracing of the lumen contours is laborious and time consuming

given the large number of images acquired in a typical OCT ex-

amination (i.e., usually more than 200 in a single pullback). Auto-

matic OCT segmentation is anticipated to enable significantly faster

(near real-time) morphometric analyses of OCT frames compared

to manual segmentation; however, this task is quite challenging,

since OCT images typically contain various elements that impact

image clarity and induce artifacts, including side branches and

intraluminal blood [5,6] . While segmentation of ophthalmic OCT

images has been extensively elaborated [7–12] , recently some ef-

forts focused on the analysis of OCT images [13–21] . Even though

those algorithms are promising, their performance varies signifi-

cantly due to the above OCT-specific image characteristics. 

In this paper, we present ARC 

–OCT, a method for fully auto-

matic detection of the lumen border in OCT images. ARC 

–OCT re-

lies on a multi-step segmentation procedure that applies on real-

world OCT images, including those with anatomic variations or ar-

tifacts, which are often excluded from relevant studies [13] , and

have been recognized as a major challenge [14–16] . In summary,

ARC 

–OCT employs a series of image transformations, e.g., taking

into account reflectivity and absorption of tissue, which leads to a

binary image and helps to identify regions with different intensity

features in the original image as parts of the arterial wall (white

areas). The luminal contour in a radial scan (the so-called A-line)

is located at the point where the scan (starting from the catheter)

meets a bright shape (i.e., a transition from black to white). Once

the initial assessment of the internal contour is performed, arti-

facts are corrected by applying a smoothing function on the curve,

which represents the internal contour. Next, side branches of the

vessel are identified with statistical control of the curve slope and,

finally, the contour is re-estimated on the respective regions. Us-

ing a large set of OCT images from native and stented arterial seg-

ments, we compared ARC 

–OCT with manual segmentation (con-

ducted by expert cardiologists) corresponding to the ground-truth.

Comparisons were made on the basis of various geometric and

closed-contour similarity features. 

The paper is structured as follows. In Section 2 we dis-

cuss related works, while in Section 3 we refer to the mate-

rial of the study. Section 4 presents thoroughly ARC 

–OCT, while

Section 5 presents the evaluation metrics and the obtained results.

In Section 6 we discuss the outcomes and the limitations of the

current study, future work directions, and the conclusions of this

study. 

2. Related work 

Various works that attempted the same automatic segmenta-

tion task rely on the morphology of binary image, resulting from

the application of a threshold to a preprocessed image. Preprocess-

ing concerns mainly smoothing filters. For example, Gurmeric et al.

[17] selected 50% of the histogram as threshold, while Bourezak

et al. [18] used a threshold that varies smoothly in each A-scan.

Athanasiou et al. [19] and Celi et al. [20] applied a global Otsu

threshold, while Moraes et al. [15] applied also a global Otsu

threshold to the matrix of coefficient of approximation that comes

from performing one-level decomposition to the preprocessed im-

age. The main difference of ARC 

–OCT is that instead of applying a

threshold to the original image or to the matrix of coefficient of

approximation, it applies Otsu threshold to a transformed image

provided by the image gradient window and the OCT-specific pro-

cessing steps. 

Sihan et al. [21] proposed an algorithm that uses multiple

Canny filters to detect edges as well as a heuristic method to ex-

clude some and link other into lumen contour. Quite differently
nd focused on contour extraction from stented images, Ughi et al.

14] detected the point of the endothelium border before the point

f maximum intensity of the A-scan, moving from the catheter to-

ards the endothelium. Each A-line was classified as: (a) empty

corresponding to open branch), (b) “clear” (where only normal tis-

ue is found), or (c) stent-line, based on measurements depending

n the intensity profile of the A-scan. After classification, the stent

as segmented in stent-strut lines and the tissue was segmented

n clear lines. If the A-line was clear, the point of the endothe-

ium border was detected before the point of maximum intensity

f the A-scan, moving from the catheter towards the endothelium.

ontrary to the method of Ughi et al., which employed manual

emoval of guide wire artifacts before segmentation, ARC 

–OCT is

ully automated and it does not focus on stent segments only. 

Overall, the main difference of ARC 

–OCT compared to meth-

ds which render the image binary, lies in the transformations

rovided by the image gradient window and the formula that is

sed to highlight the more reflective parts of tissue. These are per-

ormed before applying a global threshold, offering the advantage

o deal with a significant number of images with shaded parts of

umen. ARC 

–OCT also incorporates post-processing steps for cor-

ecting contours in images with artifacts and/or branches. 

Besides being fully-automated or not and the differences in

articular analysis steps, another point of ARC 

–OCT discrimination

ompared to other methods concerns their validation. This typi-

ally considered only one metric, i.e. the area of the lumen in each

ross-section, which was compared with the area of the manual

egmentation by experts. In order to assure the reliability of our

ndings, the ARC 

–OCT validation performed in the current study

elied on a variety of metrics and indices, both geometric and

losed contour matching indicators, using standard statistical anal-

sis methods. 

Equally important, quantitative results presented in relevant

ethods illustrated that in various types of cases segmentation is

ar from optimal, thus, the need for further research as proposed

y ARC 

–OCT. 

. Material 

Our study was based on 1812 images, obtained from 20 coro-

ary arteries [LAD (left anterior descending artery), n = 14; LCX

left circumflex artery), n = 1; RCA (right coronary artery), n = 5;

ean length = 39.7 ± 10.0 mm], of patients who underwent a clin-

cally indicated cardiac catheterization and OCT. From these im-

ges, 308 corresponded to stented arterial segments. A represen-

ative OCT image of the elaborated set is presented in Fig. 1 . Im-

ges were acquired with a Frequency Domain OCT imaging sys-

em (FD-OCT C7-XRT OCT Intravascular Imaging System, Westford,

A, USA). The pullback speed was 20 mm/s, the axial resolution

as 15 μm, and the frame rate was 100 frames/s. Temporary blood

learance was achieved with contrast injection. Manual segmenta-

ion of these images has been performed and assessed with a high

egree of agreement among experts [22] . The study was approved

y the Institutional Ethics Committee and the subjects provided

ritten informed consent for their participation. 

. ARC 

–OCT: automatic detection of lumen border 

ARC 

–OCT consists of the following analysis workflow: (1) image

reparation including artifact/noise reduction and image transfor-

ations, (2) core contour extraction, taking into account generic

mage features and OCT-specific characteristics, and (3) contour

efinement involving smoothing and contour corrections. Each of

hese phases includes further analysis steps, as illustrated in Fig. 2

nd described below. 
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Fig. 1. Sample OCT image of the elaborated image set. The asterisk indicates a 

branch, and the arrow a guide wire artifact. A thorough documentation of the ar- 

tifacts that may be found in OCT is presented in [5] (and in its respective online 

supplementary material). 
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.1. Image preparation 

.1.1. Removal of calibration markers 

The catheter reflection and the calibration marks in the original

mages ( Fig. 3 (a)) can be considered as noise, thereby affecting the

egmentation accuracy. Since these features have specific location,

imensions, and characteristics, they were removed by applying lo-

al, image-specific median filters ( Fig. 3 (B)). 

.1.2. Removal of speckle noise 

This step was applied to achieve uniformity of image regions.

mages were normalized and a 2D median filter (5 × 5 window)

as applied to completely attenuate the effect of alignment marks

hat could be still present. Then, a Gaussian filter was applied

5 × 5 window, σ = 2.5), followed by an image opening operation

pplied in a disk containing 13 neighbors as structuring element,
Fig. 2. The employed image processing workflow for OCT lumen bord
n order to further smoothen the image without blurring/affecting

orders and to render image parts in a uniform way ( Fig. 3 (c)) [23] .

.1.3. Image conversion into grayscale and polar coordinates 

Representation of the images in polar coordinates facilitates the

isualization of local image regions in terms of their radial and

angential characteristics ( Fig. 3 (d)). In our case, this transforma-

ion is favorable for the analysis of the intensity profile of individ-

al A-lines. Given a pixel ( x,y ) in the Cartesian domain, its corre-

pondent ( ρ , θ ) in polar coordinates is given by: 

 = C x + ρ ∗ cos ( θ ) and y = C y + ρ ∗ sin ( θ ) , (1)

here ( C x ,C y ) is the image center coordinates in the Cartesian do-

ain. 

.2. Core contour extraction 

.2.1. Image gradient window 

A smoother version of image gradient is given by the regional
radient that was calculated by subtracting the mean intensity in
 rectangular window (of size 10 × 5) above a pixel ( ρ , θ ) from the
ean intensity in a rectangular window (again 10 × 5) below the

ixel. If I is the input image of this step, then Ireg is the image
ith intensity in each of its points equal to the image gradient of

 : 

reg(ρ, θ ) = 

1 

(2 d θ + 1) d ρ

∗
( 

dθ∑ 

i = −dθ

dρ∑ 

j=1 

I (ρ + j, θ + i ) −
dθ∑ 

i = −dθ

1 ∑ 

j = −d ρ

I(ρ + θ, θ + i ) 

) 

. (2) 

Although typically used to detect edges, in our case this trans-

ormation helped classifying pixels in homogeneous regions as

ackground parts rather than possible parts of the wall, while pix-

ls on borders between homogeneous regions of different inten-

ity were enhanced or less attenuated. This enhancement was im-

ortant to compensate for the effect of the next analysis step to

iscriminate two image structures, i.e., shaded areas and candi-

ate boundaries. The size of the window was experimentally de-

ermined by the need to give a significant extent to the points en-

anced “row-wise” and to emphasize on the difference “column-

ise”. 

.2.2. OCT-specific processing (transforming from intensity to 

eflectivity) 

This is a key step in ARC 

–OCT, which helps detecting the con-

our in special conditions. Different tissue types have different
er extraction (main phases along with their intermediate steps). 
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(a) (b) (c)

(d) (e) (f)

(g) (h)

(a) (b) (c)

(d) (e) (f)ff

(g) (h)

Fig. 3. Image preparation and core contour extraction: (a) input image, (b) removal of calibration markers, (c) removal of speckle noise and image opening, (d) transformation 

of grayscale image into polar coordinates, (e) OCT-specific processing (transformation from intensity to reflectivity), (f) binary image transformation, (g) morphological 

operations, and (h) contour initialization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Optimal parameter values for ARC –OCT. 

Parameter Description Value Analysis Step 

Employed 

Ibgn Approximation of maximum 

intensity of image 

background 

6 4.2.2 OCT-specific 

Processing 

IT Intensity threshold for 

binarization 

0.10 4.2.3 Binary 

Transformation 

Nr Threshold number of 

connected pixels 

50 4.2.4 Morphological 

Operations 

OT1 Outlier threshold applied on 

the difference of radius 

between consecutive points 

of the contour 

20 4.3.1 Artifact and 

Small Branch 

Correction 

OT2 Outlier threshold for outlier 

presence 

10 4.3.2 Smoothing of 

3D artery mesh 

Q Haar filters parameter 3 4.3.3 Low-pass 

Filtering 
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properties in terms of absorption and backscattering of light [5] .

In particular, light absorption results in shaded areas, thus, “hid-

ing” lumen edge, while backscattering is greater when the tissue

reflectance is high [3] . The intensity value of a pixel is the prod-

uct of illumination and reflectance. As endothelium has the highest

value of reflectance, a transformation was applied to the image, in

order to detect areas possibly containing tissue, even if these were

shaded ( Fig. 3 (e)). The key idea of the transformation is to enhance

any pixel that is preceded by pixels (moving from the catheter to-

wards the artery wall in the same angle) of high intensity which

indicates that it may be shaded by a highly reflective artifact. The

Ibgn coefficient provides a value of luminosity that is greater than

background pixel values [24] . In particular, if Ireg is the outcome

image of the previous steps and Ireg ( ρ , θ ) > Ibgn , then the resulting

image Iref is given by: 

Ire f ( ρ, θ ) = I reg ( ρ, θ ) ∗max ( I reg/I bgn ) 

∗
( 

i= ρ∑ 

i=1 

I reg ( i , θ ) / 
ι=N ∑ 

i=1 

I reg ( i , θ ) 

) 

, (3)

while if Ireg ( ρ , θ ) ≤ Ibgn , then Iref ( ρ , θ ) = 0, where N is the number

of rows in the image matrix. 

The first term max(Ireg/Ibgn) is constant for each image and

helps to balance intensities in the whole image, to be in suit-

able range for the thresholding step that follows. The second term∑ i = ρ
i =1 

I reg ( I , θ ) / 
∑ ι=N 

i =1 I reg ( I , θ ) is the sum of intensities of the pix-

els that are in the same angle θ and are closer to the catheter than

the pixel whose value is adjusted, divided by the sum of inten-

sities of all the pixels in the same angle. For example, along an

A-scan, and in pixels above background threshold, this term would
e higher in an artery wall pixel when preceded by an artifact than

hen not, and also along an artifact free A-scan, it would increase

ith distance from catheter, compensating for absorption. 

Parameters (like IT) employed in ARC 

–OCT, along with their val-

es, are summarized in Table 1 . The parameter values were initially

etermined by visual inspection. In a next phase, the values have

een fine-tuned based on the overall performance of the algorithm

hich was evaluated by the similarity (measured by the mean dice

ndex) of the automatic segmentation results and the manual con-

ours (gold standard). 
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.2.3. Binary transformation 

In order to discriminate the background from areas of interest,

e adopted a local Otsu binarization process, applied on each col-

mn representing an A-scan [24] . The result was an image which

s white in the respective regions of interest of the original image

nd black where the background of the original image is ( Fig. 3 (f)).

tsu is a dynamic threshold selection method, in which a his-

ogram is divided into two classes by seeking for minimal intr-

class and maximal interclass variance. Hence, a good separation

or data with bimodal histogram is provided. In our case, some

olumns corresponded to empty lines, i.e., dark lines (usually be-

ause of an open branch) that had no information about where the

issue could be. 

Due to the transformations described previously, non-significant

arts of the image obtained a certain low-intensity value that dis-

riminated them from the background in an empty line. If the

tsu threshold was applied, it would be calculated at a very low

alue, rendering some parts of the A-scan white. Instead of that,

e chose to render that column black, if the value of the Otsu

hreshold was below an intensity threshold ( IT ), which was set 10%

f the maximum intensity of the image. 

.2.4. Morphological operations 

This step removed small objects and disjoint white areas, so

hat artifacts could be distinguished from the tissue ( Fig. 3 (g)). Im-

ge opening was applied with a disk containing 13 neighbors as

tructuring element. Then, subtraction of small areas that consist

f less than Nr white pixels ( Nr is proportional to the image size)

as applied, because these areas are considered artifacts. 

.2.5. Contour initialization 

For a first estimation of the targeted contour, in each column

e chose as the initial contour point the first transition from black

o white of the second shape that an A-line meets moving from

he catheter to the artery wall ( Fig. 3 (h)). 

In case there was only one shape, we chose the first transition

verall ( Fig. 3 (h)). Initialization points between empty areas, where

o initialization took place, were connected with a straight line.

he initial contour comprised of a set of pixels: 

 = { p = [ ρ, θ ] } , (4) 

here θ is the value of the column of the image matrix that cor-

esponds to an A-scan and ρ is the value of the row of the image

atrix. Considering that the pixels of the contour were ordered for

onsecutive angles, if θ was the angle of pixel p i , then θ + 1 was

he angle of pixel p i + 1 . 

.3. Contour refinement 

.3.1. Artifact and small-branch correction 

This step removed outliers or areas of extreme values due to

mall branches or artifacts. Let C ’ be the outcome of applying a

moothing function to C , which consisted of a moving average

lter. In particular, local regression using weighted linear least

quares and a 2nd degree polynomial model was employed [25] .

he function assigned 0 weight to data outside: 

ean ( ρ) + 6 ∗ SD ( ρ) , (5)

ith SD the standard deviation. As it was possible to lose accu-

acy by extensive smoothing, we considered the presence of out-

iers only when: 

ρi − −ρi 
′ ∣∣ > OT 1 , (6) 

here ρ i ’ is the radius of C ’, ρ i is the radius of C for the same an-

le θ i , and OT1 is an outlier threshold. In this case, we considered

ixel ρ as wrongly determined. After removing all outlier pixels
i 
y following this procedure, we estimated the new ones based on

he adjacent parts ( Fig. 4 (d)–(e)). This step succeeds in correcting

rtifacts and branches when they appear as outliers in the contour

 . 

.3.2. Smoothing of 3D artery mesh 

Since there are cases with branches and artifacts where the

ontour C is smooth and so is contour C ’, the correction was not

ossible with the previous step. Therefore, an analogous correction

s used that takes advantage of the information from other slices.

he contours of consecutive slices that are part of the same artery,

reate a mesh M . The lines L that consist of mesh points that cor-

espond to a specific angle θ are smoothed by applying the same

oving average filter as in the previous step, resulting in L ’ new

ines. We considered the presence of outliers when: 

ρi − ρi 
′ ∣∣ > OT 2 , (7) 

here ρ i ’ is the radius of L’, ρ i is the radius of L for the same angle

i , and OT2 is an outlier threshold. 

.3.3. Low-pass filtering 

There are cases where the resulting contours C do not have the

moothness that the vessel was expected to have. To assure that

very extracted contour is smooth, a low-pass filtering procedure

ook place based on consecutive Haar filters, as applied in [26] , i.e.,

 ( z 2i ), with i ε[0, Q -1] and: 

(z) = 

1 

2 

(
1 + z −1 

)
(8) 

These filters were successively applied to the contour function. 

.3.4. Final outcome visualization 

This final step transformed the image from polar to Cartesian

oordinates, incorporating the extracted contour and superimpos-

ng it in the original image. 

. Results 

The contours extracted by ARC 

–OCT were compared with the

ontours that were manually defined by clinical experts, consti-

uting the gold standard in our study. We made a separate anal-

sis for stented and non-stented arterial regions, given that OCT

s extensively used for the early identification of post-stenting

omplications and the fact that stented images introduce differ-

nt types of image features and artifacts. Comparisons were per-

ormed by calculating shape metrics applied on a frame-by-frame

asis. These metrics involved geometric features of the detected

ontour, i.e., the area (in mm 

2 ), the perimeter (in mm), the min

nd max radius (in mm), the min and max diameter (in mm), and

he centroid point (coordinates in mm). Besides geometric features,

e employed additional indicators for comparing closed contours,

amely, the Dice index (value range [0,1], with 1 denoting the per-

ect match among contours) [27] , the Hausdorff distance [28] , and

he undirected average distance (UAD). The Hausdorff distance and

AD are measured in mm, and a zero value denotes the perfect

t among the compared contours. All the above metrics and indi-

ators were employed to assess the match between the contours

xtracted by ARC 

–OCT and the manually-defined contours. 

Fig. 5 depicts boxplots of the Dice index, the Hausdorff dis-

ance, and UAD, respectively, for both non-stented and stented

egments compared to manual segmentation. ARC 

–OCT presented

ow values for Hausdorff distance and UAD. Contour distance mea-

ures presented similar median value and distribution in stented

nd non-stented images. Similarly, the results for the Dice in-

ex were close to 1. For a more in-depth analysis regarding the

greement between ARC 

–OCT and manual segmentation, Figs. 6
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(a)

(b) (c)

(d) (e)

(f)
Fig. 4. Contour refinement: (a) example input image, (b) contour estimation in empty A-scans, (c) newer estimation by a smooth function (red line), (d) correction (contour 

depicted in (b) without the part that differs significantly from the smooth contour depicted in (c)), (e) re-estimation of contour in empty A-scans, and (f) output image. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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and 7 depict the respective Bland–Altman analysis plots for all

the geometrical features [29] , for non-stented and stented images,

respectively. In addition, Table 2 illustrates the results obtained

through linear regression analysis. In all cases Bland–Altman plots

showed a small bias and narrow limits of agreement. Linear re-

gression analysis showed a significantly high correlation R 

2 > 0.88,

p < 0.001 for both stented and non-stented images, and average er-
or less than ±0.1 mm (or mm 

2 for the area) in all cases, except

rea ( ∼−0.18 mm 

2 ) and perimeter ( ∼−0.4 mm). Perimeter underes-

imation without respective area significant underestimation might

ave been related to different smoothing of contours. 

As a comparison of ARC 

–OCT with manual segmentation

or both stented and non-stented segments, Table 3 presents

he values for the median and the 25%, 75% quartiles for the



G.-A. Cheimariotis et al. / Computer Methods and Programs in Biomedicine 151 (2017) 21–32 27 

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Boxplots of: (a)–(b) the Dice index, (c)–(d) the Hausdorff distance, and (e)–(f) the UAD for the contours extracted by ARC –OCT (left column: non-stented images; 

right column: stented images). 
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f  
alculated geometrical metrics. It compares ARC 

–OCT with man-

al segmentation in terms of statistical significance in the dif-

erences of these metrics, using as significance threshold p -value

 0.001. Non-parametric rank sum testing was employed to test for

edians equality. As shown in Table 3 , ARC 

–OCT was very close

o manual segmentation. In particular, regarding the median, in

on-stented segments ARC 

–OCT was close to the ground-truth for

ll eight measures. In stented segments, ARC 

–OCT was close to

he ground-truth in three measures, while for stented segments

RC 

–OCT did not exhibit statistically significant differences with
he ground-truth in three of the employed measures, suggesting

ts high segmentation performance. 

Concerning time performance, the algorithm can segment a sin-

le slice in less than a second, without applying 3D smoothing,

hich is suitable for real time inspection. If the input to the algo-

ithm is a series of slices ( > = 2), 3D smoothing is performed. The

ntire process takes less than a minute when including smoothing

f 3D artery mesh in a series of 100 slices. 

Fig. 8 depicts representative lumen detection examples per-

ormed by ARC 

–OCT in both stented and non-stented segments. As



28 G.-A. Cheimariotis et al. / Computer Methods and Programs in Biomedicine 151 (2017) 21–32 

(a) (b) (c)

(d) (e) (f)

(g) (h)

-8

-6

-4

-2

0

2

4

6

8

0 2 4 6 8 10 12 14 16

Di
ff
er
en

ce
(m

m
)

Average (mm2)

Area

-1

-0.5

0

0.5

1

1.5

0.3 0.8 1.3 1.8 2.3 2.8Di
f f
er
en

ce
(m

m
)

Average (mm)

Max radius

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0.2 0.7 1.2 1.7 2.2

Di
f f
er
en

ce
(m

m
)

Average (mm)

Min radius

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0.5 1.5 2.5 3.5 4.5 5.5

Di
ff
er
en

ce
(m

m
)

Average (mm)

Max diameter

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Di
ff
er
en

ce
(m

m
)

Average (mm)

Min diameter

-6

-4

-2

0

2

4

6

2 4 6 8 10 12 14

Di
ff
er
en

ce
( m

m
)

Average (mm)

Perimeter

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

Di
ff e

re
nc
e
( m

m
)

Average (mm)

Centroid x

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Di
ff
er
e n

ce
(m

m
)

Average (mm)

Centroid y

Fig. 6. Non-stented images: Bland–Altman plots of differences between manual and ARC –OCT segmentation ( y -axis) against their mean ( x -axis) for all geometric metrics. 

The middle horizontal line represents the mean difference, while marginal horizontal lines represent the limits of agreement (mean ± 1.96SD). 

Table 2 

Agreement between ARC –OCT and manual segmentation. 

Evaluation Measure Linear Regression Equation R 2 Bias (average error estimation) p -value 

Area (mm 

2 ) y = 1.0 x + 0.09/ y = 0.88 x + 0.48 0.92/0.97 0.14/–0.18 < 0.001 

Maximum radius (mm) y = 1.02 x + 0.08/ y = 0.88 x + 0.24 0.88/0.93 0.10/0.07 < 0.001 

Minimum radius (mm) y = 0.97 x – 0.03/ y = 0.87 x + 0.04 0.91/0.93 –0.07/–0.07 < 0.001 

Maximum diameter (mm) y = x + 0.08/ y = 0.88 x + 0.33 0.89/0.95 0.08/0.02 < 0.001 

Minimum diameter (mm) y = 0.99 x – 0.05/ y = 0.90 x + 0.15 0.93/0.96 –0.07/–0.1 < 0.001 

Perimeter (mm) y = 0.95 x + 0.21/ y = 0.84 x + 0.94 0.92/0.96 –0.24/–0.41 < 0.001 

Centroid x (mm) y = x – 0.06/ y = 1.08 x – 0.45 0.98/0.98 –0.06/–0.03 < 0.001 

Centroid y (mm) y = 1.01 x – 0.07/ y = x – 0.01 0.98/0.99 –0.03/0 < 0.001 

Remarks : (a) A/B notation: A corresponds to the results between non-stented images and B to the stented images, respectively; (b) p < 0.001 

refers to both non-stented and stented images. 
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it is shown, ARC 

–OCT is accurate even in cases of poor image qual-

ity. 

6. Discussion and conclusion 

In this study we presented ARC 

–OCT, a method for fully-

automatic detection of lumen borders in OCT images. Our major

goal was to develop a method capable of segmenting real-world

OCT images containing stented segments, branches, and artifacts

[2,5,6] . Especially for evaluating stent expansion, thrombosis, and
alapposition, OCT is the method of choice both in clinical and

esearch settings [30] . Hence, accurate automated segmentation on

uch artery areas is crucial for further evaluation of OCT images. 

ARC 

–OCT allows accurate and fully-automated lumen border

etection in OCT images. Its underlying algorithm includes a se-

ies of processing steps spanning from image transformations to

ontour extraction based on morphological operations and OCT-

pecific characteristics, and contour refinements. The accuracy of

RC 

–OCT was successfully assessed using multiple geometric and

lose-contour matching criteria in a large dataset of 1812 images,
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Fig. 7. Stented images: Bland–Altman plots of differences between manual and ARC –OCT segmentation ( y -axis) against their mean ( x -axis) for all geometric metrics. The 

middle horizontal line represents the mean difference, while marginal horizontal lines represent the limits of agreement (mean ± 1.96SD). 

Table 3 

Comparison of evaluation measures between manual segmentation and ARC –OCT. 

Evaluation Measure 25% Median 75% p -value 

Area (mm 

2 ) 4.01/3.77 5.52/5.18 8.31/6.81 0.32/ 0.75 

3.94/3.61 5.52/5.09 7.96/7.81 

Maximum radius (mm) 1.33/1.26 1.56/1.45 1.89/1.67 < 0.001/0.03 

1.23/1.17 1.48/1.36 1.75/1.68 

Minimum radius (mm) 0.89/0.95 1.11/1.12 1.38/1.31 < 0.001/ < 0.01 

0.97/1.00 1.18/1.19 1.45/1.42 

Maximum diameter (mm) 2.48/2.34 2.92/2.74 3.53/3.15 0.05/0.43 

2.40/2.26 2.88/2.66 3.44/3.28 

Minimum diameter (mm) 1.96/2.04 2.39/2.41 2.95/2.76 0.09/0.02 

2.05/2.09 2.48/2.46 3.00/3.04 

Perimeter (mm) 7.27/7.04 8.52/8.19 10.34/9.37 0.0 04/ < 0.0 01 

7.46/7.08 8.84/8.42 10.58/10.46 

Centroid x (mm) 4.04/4.29 4.50/4.62 4.93/4.85 < 0.001/0.048 

4.18/4.36 4.61/4.68 5.00/4.86 

Centroid y (mm) 2.90/3.03 3.53/3.66 3.87/4.14 0.04/0.40 

3.02/3.09 3.57/3.69 3.91/4.17 

Remark : A/B notation: A corresponds to the results between non-stented images and B to the stented images, respectively. 
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oth stented and non-stented, obtained from 20 patients. Compar-

sons were made with the ground-truth manual segmentation, il-

ustrating that ARC 

–OCT is highly efficient and close to the ground-

ruth in the majority of the examined cases. To this end, ARC 

–OCT

as the potential to facilitate OCT segmentation enabling rapid

orphometric analyses in native and stented arterial segments. 
Various methods have been proposed for automatic OCT seg-

entation (as presented in the Related Work section). We made

 series of comparisons of ARC 

–OCT with relevant methods, in

articular with those presented in Ughi et al. [14] and Moraes

t al. [15] , and ARC 

–OCT presents advantages over them. The im-

lementation of these methods is not publicly available and, thus,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

*

*

*
*

Fig. 8. Indicative segmentation outcomes obtained from ARC –OCT. Red contour corresponds to the ARC –OCT outcome and green to manual segmentation. (a)–(g) correspond 

to stented images, while (h)–(l) to non-stented images. (a), (b), (g) and (h) represent OCT frames without artifacts. (c), (d) represent OCT frames with guide wire artifact. 

In (i) and (j) presence of atherosclerotic plaques (fibrocalcific and fibrous with lipid pool, respectively) is indicated with an arrow. In (e), (f), (k) and (l) presence of side 

branches is indicated with ∗ . All the outcomes of ARC –OCT present high agreement with the manual segmentation. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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Table 4 

Overview of results presented by various automatic methods. 

Method Test set size Specific info Kind of test set Metrics Value of metric 

Gurmeric et al 39 cross-sections Stented Intracoronary OCT Bland–Altman (Area) 0.11 ± 0.70 mm 

2 

Moraes et al (5.9 ± 3 s) 90 images Included images with a 

variety of artifacts 

Intravascular OCT from 

2 patients, 2 pigs, 

and 1 rabbit 

Dice 0.971 

Dice of the method 

implemented by our 

team in ARC –OCT 

dataset 

0.844 non-stented, 0.881 

stented 

Athanasiou et al. 556 images randomly 

selected from 22 

patients 

Excluded frames with 

any kind of artifact 

Intracoronary OCT Bland-Altman(Area) 

limits of agreement 

−0.080 ± 1.96 × 0.082 mm 

2 

Pearson correlation 

coefficient 

0.99 

Positive predictive 

value (PPV) 

0.98 

Celi et al. Validation set 210 

images (randomly 

selected) 

Included images with 

common artifacts 

and common difficult 

imaging conditions 

Intracoronary OCT Limits of agreement 

(Area) 

1.2 mm 

2 

Correlation coefficient 0.97 and 0.96 (two different 

manual delineations as 

gold standard) 

Tsantis et al. 2710 images Stented and 

non-Stented 

Human Femoral Artery Overlap(Dice) 0.937 ± 0.045 

Sihan et al. (3–5 s) 4137 images. In 3% of the detected 

contours an observer 

correction was 

necessary. 

Intracoronary OCT Mean lumen areas 

human vs. automated 

5.2 ± 2.16 mm 

2 (manual) 

5.1 ± 2.21 mm 

2 

(automatic) P = 0.26 

Regression analysis r 0.99 

ARC-OCT (1 s) 1812 images from 20 

pull-backs 

No exclusions Intracoronary OCT Dice 0.935 (stented), 0.925 

(non-stented) 

R 2 (Area) 0.97(stented), 0.92 

(non-stented) 
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aving accurate information regarding the implementation details

f these methods was not possible, while necessary for a reliable

omparison. To this end, since our implementations of other pub-

ished methods (which were based on the content of the respective

apers per se) might be questionable, this could make our com-

arative evaluation results questionable as well. For this reason,

e provide Table 4 with information about the results that other

ethods present in different datasets. In the same table, we choose

o present for our method, the same metrics that are commonly

sed by other methods. It is obvious that the comparison is still

 difficult task since all other methods present fewer metrics than

ur method and also the metrics used differ for each method. Most

mportantly, it is difficult to compare because many of these meth-

ds are validated in much smaller data set and in some occasions

here are exclusions of challenging images. However, it can be ob-

erved that only our method is validated against a large dataset of

uman intracoronary images with no exclusions and no observer

orrections and that it presents equally accurate results with other

ethods. Since, exclusion of challenging images, observer correc-

ions and small datasets improve significantly metrics value, it can

e argued that ARC 

–OCT is more accurate. For example, our imple-

entation of Moraes et al method validated against the data set

sed to validate ARC 

–OCT, has a mean dice 0.844 for non-stented

mages and 0.881 for stented images, while the results in their pa-

er imply a mean dice index of 0.97. 

ARC 

–OCT builds upon our previous work [22] , which focused

n: (a) the construction of an annotated OCT imageset by engag-

ng experts in the manual definition of lumen borders, and (b) the

linical validation of a first approach for automatic OCT segmenta-

ion, which finally suggested a semi-automatic method for lumen

order detection. Extending this prior work, ARC 

–OCT is fully auto-

ated by employing OCT-specific features enabling accurate con-

our extraction and handling of discontinuities. All comparisons

 

ere performed against the ground-truth in terms of various ge-

metric metrics and closed contour comparison indicators and by

onducting standard statistical analysis methods. In almost all fea-

ures, ARC 

–OCT was found very close to the ground-truth, for both

tented and native segments. 

As future work, we consider employing contour information ex-

racted from consecutive frames as an extra constraint in the seg-

entation. Given the high accuracy of ARC 

–OCT, we aim to intro-

uce it both into the clinical environment and as a research tool.

ur goal is to follow an approach similar to [31] and integrate

RC 

–OCT in a graphical tool aiming to facilitate 3D reconstruc-

ion of coronary arteries. An accurate 3D arterial model will enable

he performance of advanced computational fluid dynamics studies

32] , in order to assess the implication of local hemodynamics in

therosclerosis and in-stent restenosis. 
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