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Abstract
Purpose of Review Clinical trials with PCSK9 inhibitors have shown a robust decrease in plasma LDL levels and a significant
reduction in the incidence of cardiovascular atherosclerotic events. However, the role of PCSK9 in atherosclerosis is not well
investigated and it remains unclear whether PCSK9 inhibition has direct, LDL-independent, anti-atherosclerotic effects. This
review outlines the molecular pathways and targets of PCSK9 in atherosclerosis and summarizes the experimental and clinical
data supporting the anti-atherosclerotic (pleiotropic) actions of PCSK9 inhibitors.
Recent Findings PCSK9 is expressed by various cell types that are involved in atherosclerosis (e.g., endothelial cell, smooth
muscle cell, and macrophage) and is detected inside human atherosclerotic plaque. Preclinical studies have shown that inhibition
of PCSK9 can attenuate atherogenesis and plaque inflammation.
Summary Besides increasing plasma LDL, PCSK9 appears to promote the initiation and progression of atherosclerosis.
Inhibition of PCSK9 may confer atheroprotection that extends beyond its lipid-lowering effects.

Keywords Proproteinconvertasesubtilisin/kexin9 .Atherosclerosis .PCSK9inhibitors .Pleiotropiceffects .Anti-atherosclerotic
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Introduction

Proprotein convertase subtilisin/kexin 9 (PCSK9) is a protein
that was discovered in 2003 [1–3]. Before its discovery, there
were only two known genes (i.e., LDL-R and ApoB) [4] linked

with familial hypercholesterolemia in humans. A gain-of-
function mutation in PCSK9 gene was also found to cause
familial hypercholesterolemia [5]. The canonical mode of ac-
tion of PCSK9 protein involves chaperoning the receptor for
low density lipoprotein (LDL) to the intracellular degradative
organelles, speeding its breakdown [6]. The consequent re-
duction in surface LDL receptors impedes LDL clearance,
yielding an increase in plasma LDL concentration. At present,
many drug candidates that inhibit the PCSK9 pathway have
entered preclinical or early phase clinical trials, and two of
those drugs (i.e., evolocumab and alirocumab) have already
received FDA approval [7, 8]. Preclinical studies showed that
PCSK9 exerts pleiotropic effects beyond plasma LDL regula-
tion and could be a key molecule in the pathophysiology of
atherosclerosis [9]. The inhibition of PCSK9 attenuates the
progression of atherosclerosis and reduces the risk for acute
cardiovascular events [10, 11••]. However, the underlyingmo-
lecular mechanisms through which PCSK9 inhibition might
confer atheroprotection beyond LDL lowering remain uncer-
tain. Recognizing the PCSK9 molecular targets other than
LDL receptor and their implication on the cellular function
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and phenotype could point the way toward selective PCSK9
inhibition, and more targeted anti-atherosclerotic efficacy.

This review aims to provide an overview of the possible
pleiotropic effects of PCSK9 inhibitors in atherosclerosis be-
yond their lipid-lowering action. We summarize the molecular
pathways and targets of PCSK9 in atherosclerosis and discuss
the experimental and clinical data supporting the anti-
atherosclerotic (pleiotropic) actions of PCSK9 inhibitors.
Even though PCSK9 inhibition appears to interfere with sys-
tems other than the heart and vasculature (i.e., liver, brain,
kidney, intestine, pancreas) [12], those effects exceed the
scope of this review.

PCSK9: From Gene Expression to Molecular
Targets

Transcription Several transcription factors regulate PCSK9
gene expression including sterol regulatory element binding
proteins-1 and -2 (SREBP-1 and SREBP-2) and hepatocyte
nuclear factor 1 (HNF1) [3, 13, 14]. Various inflammatory
stimuli also augment PCSK9 expression [e.g., lipopolysac-
charide (LPS) or oxidized LDL] [15–18] through activation
of NF-κB and possible inhibition of peroxisome proliferator
activated receptor-α (PPAR-α) [19••, 20].

Translation Following transcription, the PCSK9 mRNA is
translated to PSCK9 protein in the endoplasmic reticulum
[6]. After leaving the endoplasmic reticulum, PCSK9 protein
follows three possible pathways (Fig. 1): (i) Transportation to
endosomes/autophagosomes/lysosomes exerting its intracellu-
lar actions [21, 22] (ii) Release into the extracellular space
exerting its autocrine and paracrine actions [23••] and (iii)
Secretion (predominantly from hepatocytes) into the circulation
exerting its systemic actions [24].

Post-translational Regulation PCSK9 undergoes post-
translational regulation through several mechanisms: (i) In
the endoplasmic reticulum, PCSK9 binds with the
endoplasmic reticulum-resident chaperone protein, GRP94,
limiting its binding with LDL-R intracellularly [25], (ii) In
the Golgi apparatus, PCSK9 is truncated and inactivated by
furin [26], (iii) On the cellular surface, Annexin A2 binds with
PCSK9 and inhibits the interaction of PCSK9 with LDL-R
extracellularly [27, 28], and iv) In systemic circulation, >
40% of plasma PCSK9 is bound to apolipoprotein B100 on
LDL particles, which interferes with its interaction with the
cell surface LDL-R [29].

Molecular Targets of PCSK9 in Atherosclerosis The molecular
and cellular targets of PCSK9 are summarized in Table 1.
PCSK9 exerts all its actions through enzymatic auto-

activation and subsequent tight binding with its molecular
targets.

PCSK9 Inhibitors

PCSK9 inhibition can occur at several sites across PCSK9
pathway. The PCSK9 inhibitors and their mechanism of ac-
tion are summarized in Table 2.

Monoclonal Antibodies Monoclonal antibodies against
PCSK9 have been the most well studied and clinically test-
ed PCSK9 inhibitors. It is the only class of PCSK9 inhib-
itors that gained approval by the FDA and European
Medicines Agency [7, 8, 48, 49]. Monoclonal antibodies
bind PCSK9 in the extracellular milieu and inhibit its in-
teraction with extracellular molecular targets. Evolocumab
and alirocumab - both fully human monoclonal antibodies
against PCSK9 - have been studied in several phase 1, 2
and 3 clinical trials, which demonstrated a potent LDL
lowering effect without showing safety concerns [50–53].
These two drugs have received FDA approval: (i) As an
adjunct to diet and maximally tolerated statin therapy in
adult patients with heterozygous familial hypercholesterol-
emia, and (ii) In high risk patients with clinical atheroscle-
rotic cardiovascular disease who cannot reach the LDL
target with statins or are intolerant to statins [7, 8]. In ad-
dition, evolocumab is FDA approved for homozygous fa-
milial hypercholesterolemia on top of statins [7], and as
monotherapy for risk reduction of myocardial infarction,
stroke, and coronary revascularization in adults with
established cardiovascular disease [54]. Bococizumab is a
humanized (not fully human) monoclonal antibody that
was tested in phase 3 trials and was withdrawn from further
development in November 2016 due to development of
antibodies against the drug [37]. LY3015014 and RG7652
are additional anti-PCSK9 monoclonal antibodies currently
under investigation in early clinical studies [38, 39, 55].

Small Interfering RNAs (siRNAs) Inclisiran is an siRNA
engineered to selectively target hepatocytes where it promotes
cleavage of intracellular PCSK9mRNA [56]. In phase 1 and 2
clinical trials, inclisiran lowered LDL in a dose-dependent and
durable fashion [40, 57].

Vaccines To date, two different PCSK9 vaccines have been
developed that elicit the production of auto-antibodies against
PCSK9 [42, 58, 59]. Both vaccines have demonstrated signif-
icant hypolipidemic efficacy, as well as systemic and vascular
anti-inflammatory actions in animal studies [41, 42, 58].
Vaccine-mediated inhibition of PCSK9 and its long-term ef-
fects warrant further investigation.
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Monobodies Adnectin BMS-962476, is a small protein that
binds and suppresses free PCSK9. The drug has undergone
testing in non-human primates, as well as in a phase 1 clinical
trial and showed adequate efficacy in reducing LDL [43].

Preclinical PCSK9 Inhibitors Small, EGF-A mimetic, peptides
that competitively block free PCSK9 have been created. In vitro

studies showed that those peptides can preserve the levels of
surface LDL-R and enhance LDL uptake by hepatocytes [44,
60, 61]. Annexin A2 is a peptide/natural endogenous regulator
of PCSK9 that can lower PCSK9 in cell cultures [27, 28, 45].
Furthermore, small molecules that can potentially be given oral-
ly have been studied in small animals and decreased PCSK9
levels, LDL, and plaque size [46, 62].

Fig. 1 Intracellular and
extracellular pathways of action
of PCSK9

Table 1 Direct molecular targets
of PCSK9 relevant to
atherosclerosis

Molecular target Cellular target Effect of pcsk9 on
molecular target levels

LDLR [21] Hepatocyte Decreased effect [30]

Macrophage Decreased effect [23••]

VLDLR [30] Adipocyte Decreased effect [24]

Smooth muscle cell Unknown effect

Endothelial cell Unknown effect

Macrophage Unknown effect

LRP-1 [31] Hepatocyte Decreased effect [31]

Smooth muscle cell Unknown effect

Endothelial cell Unknown effect

Macrophage Decreased effect [32]

CD36 [33] Macrophage Unknown effect

Hepatocyte Decreased effect [33]

Intestinal cell Unknown effect

ApoB100 [22] Hepatocyte Increased effect [22]

ApoB48 [34] Intestinal cell Unknown effect

LDLR, low-density lipoprotein receptor; VLDLR, very low-density lipoprotein receptor; LRP-1, low-density
lipoprotein receptor-related protein 1
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PCSK9 Inhibitors and Cardiovascular
Outcomes

The effect of PCSK9 inhibition in atherosclerosis and cardio-
vascular outcomes using monoclonal antibodies (i.e.,
evolocumab, alirocumab and bococizumab) has been studied
in large multicenter randomized clinical trials and is summa-
rized in Table 3. The completedGLAGOVand FOURIER trials
showed that evolocumab, on top of statins, in patients with
established cardiovascular disease, promotes atherosclerotic
plaque regression in coronary arteries [10] and reduces signif-
icantly the incidence of myocardial infarction, coronary revas-
cularization and ischemic stroke by 27, 22, and 25%, respec-
tively [11••]. Similar large trials testing the impact of
alirocumab on cardiovascular outcomes and atherosclerotic
plaque regression (i.e., ODDYSSEY Outcomes, ODYSSEY
J-IVUS, PACMAN-AMI) are ongoing [66, 67, 70].
Bococizumab also showed favorable effects on cardiovascular
outcomes in the SPIRE-1 and SPIRE-2 trials; however, these
studies were terminated prematurely due to the development of
anti-bococizumab antibodies in some study participants [37].
Meta-analyses of clinical trials having LDL reduction as

primary end-point, showed a mortality benefit with
evolocumab and alirocumab [71, 72]. The trials included in
the meta-analyses did not have cardiovascular mortality as
a primary outcome.

Anti-atheroscerotic Effects of PCSK9
Inhibition Beyond LDL Lowering

The FOURIER trial suggested that the outcome benefit with
PCSK9 monoclonal antibodies in patients with established car-
diovascular disease related directly to the LDL lowering [11••]
as the outcome benefit resembled that achieved by similar low-
ering of LDLwith statins [73]. Based on clinical investigations,
loss-of-function mutations of PCSK9, resulting in very low
plasma activity of PCSK9, conferred significant reduction in
plasma LDL and adverse cardiovascular events [74–77]. This
reduction of cardiovascular risk appeared to exceed the antici-
pated benefit from the LDL reduction and one could hypothe-
size a possible anti-atherosclerotic (pleiotropic) benefit of
PCSK9 inhibition beyond LDL lowering [78]. In fact, in the
FOURIER study patients with very low LDL (~20 mg/dl) still

Table 3 Clinical trials of PCSK9 inhibitors in cardiovascular diseases

Clinical trial Objectives Clinical
phase

Number of
participants

Completion
date

Outcome

Evolocumab

FOURIER [11••] Effect on cardiovascular morbidity
and mortality in patients with
vascular disease

III 27,564 Completed Reduced incidence of MI,
coronary revascularization
and ischemic stroke

GLAGOV [10] Effect on coronary atherosclerotic plaque III 900 Completed Diminished PAVand normalized
TAV, induced plaque regression

ANITSCHKOW [63] Effect on arterial wall inflammation
in patients with high concentrations
of Lp(a)

III 120 Apr 2018

Study of reference [64] Effect on the intensity of inflammation
in the vascular wall

IV 10 Oct 2020

Study of reference [65] Effect on platelet reactivity in patients after
percutaneous coronary intervention

I 150 Jan 2019

Alirocumab

ODYSSEY Outcomes [66] Effect on cardiovascular outcomes after
an ACS

III 18,600 Jan 2018

ODYSSEY J-IVUS [67] Effect on coronary artery plaque volume
in patients hospitalized for ACS

IV 200 Sep 2018

Study of reference [68] Effect on carotid atherosclerotic plaque IV 30 Aug 2018

Study of reference [69] Effect on plaque regression in peripheral
arterial disease

IV 54 Jul 2020

PACMAN-AMI [70] Effect on PAV reduction in coronary arteries
of patients with acute myocardial infarction

III 220 Sep 2019

Bococizumab

SPIRE-1 and SPIRE-2 [37] Effect on reduction of major cardiovascular
events in high risk subjects

III 28,000 Terminated Reduced incidence of
cardiovascular events
in high risk patients

PAV, percent atheroma volume; TAV, total atheroma volume; ACS, acute coronary syndrome
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had an event rate of ~7%, suggesting themultifactorial nature of
atherosclerosis beyond LDL [11••]. However, the increased
cardiovascular risk benefit achieved with PCSK9 loss-of-func-
tion mutations could also result from the cumulative beneficial
effect of the lifelong LDL reduction, independent of anti-ath-
erosclerotic pleiotropic effects [79].

The strong LDL-dependent effect of PCSK9 inhibi-
tion doubtless dominates in improving cardiovascular
outcomes. However, concurrent LDL independent path-
ways of PCSK9 inhibition might also contribute, possi-
bly through direct anti-inflammatory and plaque-
stabilizing effects. Preliminary observations from
in vitro and animal studies and limited human studies
showed the presence of PCSK9 in atherosclerotic
plaques [23••], and its production and secretion by var-
ious structural and immune cells that participate in the
atherosclerotic process [i.e. endothelial cells (ECs)
[19••], vascular smooth muscle cells (VSMCs) [23••]
and macrophages [18]]. Accordingly, preliminary
in vitro and animal studies showed that PCSK9 inhibi-
tion interferes with multiple processes in atherosclerosis.
The ANITSCHKOW trial, a phase 3 trial investigating
the effects of evolocumab on arterial wall inflammation
by FDG-PET/CT imaging [63], as well as other similar
trials [68, 69], might shed light into the notion of pleio-
tropic effects of PCSK9 inhibitors.

Furthermore, the observation that PCSK9monoclonal antibod-
ies lack overt LDL-independent effects on outcomes does not
necessarily translate to the whole class of PCSK9 inhibitors, given
that the monoclonal antibodies interfere with the plasma PCSK9
and not with intracellular PCSK9. PCSK9 inhibition might affect
vascular cell targets other than the LDL receptor (Fig. 2).

Molecular Pathways of Anti-atherosclerotic
Pleiotropic Effects of PCSK9 Inhibition

The molecular effects of PCSK9 inhibition in atherosclerosis
are summarized in Table 4 and Fig. 3.

PCSK9 Inhibition, Endothelial Shear Stress (ESS) and Vascular
Cells Pro-Inflammatory Response In vitro studies showed that
low ESS-a major pro-atherosclerotic factor [94]-promotes the
expression of PCSK9 by ECs and VSMCs [19••]. In line with
those in vitro studies, investigations in mouse atherosclerotic
aortas and human atherosclerotic plaques demonstrated that
the expression of PCSK9 co-localizes with low ESS [19••,
23••]. Sterol regulatory element binding protein-1 transcrip-
tion factor, augmented by low ESS can boost PCSK9 expres-
sion [95] and thus might link ESS to PCSK9, but this mech-
anism remains unproven.

Furthermore, a bidirectional positive feedback prevails be-
tween PCSK9 and major pro-inflammatory modulators [i.e.
NF-κB, reactive oxygen species, lectin-type oxidized LDL
receptor-1 (LOX-1)] [16••, 19••, 80], which also respond to
low ESS [94]. Transfection of cultured ECs and VSMCs with
anti-PCSK9 siRNA suppressed significantly the expression of
NF-κΒ and LOX-1 [16••, 19••], whereas PCSK9 knockout
mice treated with LPS – a potent pro-inflammatory mediator
- had significantly reduced expression of LOX-1, vascular cell
adhesion molecule-1 (VCAM-1) and interleukin 1 (IL-1) in
vascular tissues compared to those in wild type mice [16••].
Taken together, these data associate low ESS, pro-
inflammatory modulators, PCSK9 and pro-inflammatory EC
and VSMC activation, suggesting a role of PCSK9 inhibition
in blocking this link (Fig. 4) [16••, 19••, 80].

Fig. 2 Conceptual LDL-dependent and LDL-independent implication of PCSK9 inhibitors in cardiovascular risk reduction
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PCSK9 Inhibition and Oxidative Stress The oxidation of LDL
in the subendothelial space by locally produced reactive oxy-
gen species may contribute to atherogenesis [96]. Transfection
of EC and VSMC cultures with PCSK9 siRNA significantly
decreased the production of reactive oxygen species by 30%
and 50%, respectively [19••]. Furthermore, in in vivo experi-
mental studies, PCSK9-deficient mice expressed significantly
less NADPH oxidase—a major enzyme that generates reac-
tive oxygen species—and subsequently reduced production of
reactive oxygen species in aortas compared to wild type mice,
suggesting a direct anti-oxidative effect of PCSK9 inhibition
[19••].

PCSK9 Inhibition and Early Plaque Inflammation (i) PCSK9
Inhibition and Plaque Macrophages and T Cells: PCSK9
promotes monocyte recruitment into the plaque by

augmenting the expression of VCAM-1 and monocyte
chemoattractant protein-1 (MCP-1) in vitro and in mice
[16••, 80]. In addition, mice transplanted with human
PCSK9-positive macrophages showed a significant increase
in plaque macrophage accumulation compared to controls. Of
note, this pro-inflammatory effect of human PCSK9 produc-
ing macrophages did not depend on serum LDL levels [32,
97]. PCSK9 inhibition in cultured VSMCs and in mice signif-
icantly decreased the expression of VCAM-1 [16••] and intra-
cellular adhesion molecule-1 (ICAM-1) [41, 81]. Likewise,
silencing tissue PCSK9 expression with lentivirus-PCSK9
shRNA in mice reduced significantly the expression of
MCP-1 and subsequently blunted the accumulation of macro-
phages in aortic plaques in an LDL independent manner [80].
Similarly to macrophages, aortic plaque T cell accumulation
dropped significantly in mice treated with alirocumab [81].

Table 4 Pleiotropic effects of PCSK9 inhibition in atherosclerosis

Vascular effect Molecular effect Possible target receptor

PCSK9 inhibition and vascular cells
pro-inflammatory response

Reduces expression of pro-inflammatory
molecules

Reduces NF-κB, LOX-1 [16••, 19••] TLR4/NF-κB [80]

Reduces expression of membrane adhesive
molecules

Reduces VCAM-1 [16••] and
ICAM-1 [81]

NF-κB axis

PCSK9 inhibition and oxidative stress

Reduces oxidative stress Reduces NADPH and ROS [19••] NF-κB axis

PCSK9 inhibition and early
plaque inflammation

Reduces macrophages accumulation Reduces VCAM-1 [16••], ICAM-1
[41, 81] and MCP-1 [80], TNF-α,
IL-1, IL-6 [18, 80]

NF-κB axis

Increases cholesterol efflux in macrophages Increases ABCA1 cholesterol efflux
protein [82•]

NF-κB axis, TLR4/NF-κB
[80], LDLR [83]

PCSK9 inhibition and VSMCs

Promotes contractile phenotype of VSMC Increases alpha-smooth muscle actin
and myosin heavy chain II,

Reduces collagen I and caldesmon [84•]

LRP-1 [85], VLDLR [86]

Reduces VSMC proliferation Unknown LRP-1 [85], VLDLR [86]

Reduces VSMC migration Activates lamellipodia and Rac 1 [84•] LRP-1 [85], VLDLR [86]

PCSK9 inhibition and advanced
plaque inflammation

Reduces apoptosis in endothelial cells [87],
VSMCs [88•] and macrophages [89]

Increases Bcl-2 [87, 88•] Bax - Bcl-2 axis

Promotes autophagy Reduces mTOR [88•] mTOR axis [90]

Promotes efferocytosis Unknown LRP-1 [91]

PCSK9 inhibition and necrotic core

Decreases necrotic core size Decreases the necrotic content
of a plaque [81]

PCSK9 inhibition and thrombosis

Reduces platelet reactivity Reduces platelet reactivity in patients
with hypercholesterolemia [92]

Reduction in circulating
LDL [93]

LOX-1, lectin-type oxidized LDL receptor 1; TLR4, toll-like receptor 4; VCAM-1, vascular cell adhesion molecule 1; ICAM-1, intercellular adhesion
molecule 1; ROS, reactive oxygen species; MCP-1, monocyte chemoattractant protein 1; ABCA1, ATP-binding cassette transporter 1; LRP-1, low-
density lipoprotein receptor-related protein 1; VSMC, vascular smooth muscle cell; mTOR, mechanistic target of rapamycin
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(ii) PCSK9 Inhibition and Cytokine Production by
Macrophages: Internalized oxidized LDL stimulates the pro-
duction of PCSK9 and cytokines (e.g., TNF-α, IL-1, IL-6) by
macrophages [18] that further aggravate inflammation. PCSK9
inhibition in vitro suppresses the production of inflammatory
cytokines (e.g., TNF-α, IL-1, IL-6) in macrophages through

downregulation of NF-κB [18, 80]. Furthermore, silencing of
PCSK9 expression in vivo in ApoE knockout atherosclerotic
mice attenuated significantly the expression of pro-
inflammatory molecules (i.e., TNF-α, IL-1, TLR4 and
NF-κB) in aortic lesions [80]. More importantly, inhibition of
PCSK9 expression in those mice did not interfere with plasma
lipid levels, suggesting that the beneficial anti-inflammatory
effect of PCSK9 inhibition unlikely depended on plasma
LDL [80].

(iii) PCSK9 Inhibition and Accumulation of Oxidized LDL
in Macrophages: LDL accumulation in macrophages is deter-
mined by the net balance between LDL influx mediated by
CD36, LOX-1 and other scavenger receptors [98] and LDL
efflux modulated by several membrane proteins, including the
ATP-bindingmembrane cassette transport proteins A1 and G1
[99]. The role of PCSK9 in this LDL equilibrium in macro-
phages is not well understood. As PCSK9 leads to degradation
of CD36, PCSK9 might prevent LDL loading into macro-
phages [33, 100]. However, some studies also showed that
PCSK9 limits ATP-binding membrane cassette transport pro-
tein A1 expression through LDL-R depletion and consequent-
ly impairs LDL efflux in macrophages [82•]. Conversely,
PCSK9 inhibition appears to stimulate LDL-R and subse-
quently to increase ATP-binding membrane cassette transport
protein A1 in macrophages, thereby promoting cholesterol
efflux [82•]. Whether the PCSK9 inhibition-mediated

Fig. 3 Cellular and vascular
pleiotropic effects of PCSK9
inhibition

Fig. 4 Conceptual interplay among ESS, PCSK9 and pro-inflammatory
vascular cell activation
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reduction in LOX-1 attenuates LDL influx in macrophages
requires future investigation.

PCSK9 Inhibition and VSMC De-Differentiation, Migration,
and Proliferation Following EC activation, local production
of platelet-derived growth factor B and matrix metalloprotein-
ases may promote VSMC phenotypic modulation, migration,
and proliferation [101]. PCSK9 appears to participate in these
pathologic processes [84•]. VSMCs isolated from aortas of
PCSK9 knockout mice demonstrated increased contractile
VSMC markers, reduced cytoskeletal remodeling and migra-
tory activity, as well as slower proliferation compared to
VSMCs from PCSK9+/+ mice [84•]. The addition of PCSK9
to cultured PCSK9−/− VSMCs restored migration and prolif-
eration [84•]. In vivo investigations of perivascular carotid
collar placement showed that PCSK9−/− mice developed sig-
nificantly less neointimal thickening than PCSK9+/+ mice,
consistent with an anti-proliferative effect of PCSK9 inhibi-
tion, which could also reduce in-stent restenosis if translatable
to humans [84•]. Some of these effects of PCSK9 inhibitors
might result from increases in the low-density lipoprotein
receptor-related protein 1 (LRP-1) and the very-low-density-
lipoprotein receptor (VLDLR) in VSMCs [84•, 85].

PCSK9 Inhibition and Advanced Plaque Inflammation (i) PCSK9
Inhibition and Apoptosis: PCSK9 may promote apoptosis of
all major cell types involved in atherosclerosis, whereas
PCSK9 inhibition exerts the opposite effect [87–89, 102].
Human umbilical vein ECs incubated with oxidized LDL
demonstrated attenuated apoptosis after treatment with
PCSK9 siRNA [87, 102]. In the same fashion, PCSK9 inhi-
bition of cultured VSMCs decreased mitochondrial DNA
damage and increased Bcl-2, thereby reducing VSMC apopto-
sis [88•]. Also, PCSK9 siRNA attenuated macrophage apo-
ptosis induced by oxidized LDL [89]. Further to in vitro in-
vestigations, in vivo experiments in PCKS9 knockout mice
showed significantly diminished expression of EC and
VSMC apoptotic markers in aortic tissue [88•].

(ii) PCSK9 Inhibition and Autophagy: Autophagy may
contribute to atherosclerosis resolution, by clearing dysfunc-
tional or senile cellular components intracellularly thus
preventing the expansion of inflammation [103]. Data on the
role of PCSK9 inhibitors in autophagy in atherosclerotic
plaque are limited. Addition of PCSK9 siRNA to VSMCs
cultures seemed to promote autophagy and cellular vitality
via the mTOR pathway [88•]. These aspects warrant further
research.

(iii) PCSK9 Inhibition and Macrophage Efferocytosis:
Efferocytosis is a process of inflammation resolution through
which phagocytes remove necrotic cells [104]. Since macrophage
LRP-1 deficiency impairs macrophage efferocytosis [91] and
PCSK9 inhibition increases membrane LRP-1 in macrophages
[32], PCSK9 inhibition might sustain macrophage efferocytosis.

PCSK9 Inhibition and Necrotic Core: Mice treated with
alirocumab demonstrated fewer macrophages and a signifi-
cantly smaller necrotic core size than controls, alterations that
might “stabilize” plaque [81]. Of note, these effects appeared
to depend on LDL lowering.

PCSK9 Inhibition and Thrombosis In a recent study, high plas-
ma PCSK9 associates with increased platelet reactivity and
increased recurrence of acute coronary events at one-year of
follow-up [105]. PCSK9 inhibition with monoclonal antibod-
ies in patients with hypercholesterolemia significantly reduced
platelet reactivity [92]. Furthermore, in human trials, PCSK9
inhibitors are associated with a robust decrease of lipoprotein
a, a highly pro-atherosclerotic and pro-thrombogenic particle
[106, 107]. Whether PCSK9 inhibition could reduce the
thrombotic events through reduction of platelet reactivity
and lipoprotein a warrants further investigation.

Conclusions

The multifaceted protein PCSK9 affects many crucial biolog-
ical processes, including lipid metabolism. The advent of
PCSK9 inhibitors, which have demonstrated clinical efficacy,
provide an important new tool in our fight against atheroscle-
rotic diseases, as well as a victory of translational science. The
FOURIER study affirmed the notion that PCSK9 inhibition
could provide protection against atherosclerotic cardiovascu-
lar diseases beyond existing conventional therapy.

Undoubtedly, plasma LDL drives atherogenesis.
Consequently, the LDL reduction induced by PCSK9 inhibi-
tion likely comprises the main underlying mechanism of the
observed atheroprotection. Yet, the mechanism(s) by which
PCSK9 inhibitors benefit cardiovascular outcomes remains
incompletely unraveled. Other effects in addition to decreased
plasma LDL, might also be involved. Potential pleiotropic
effects of PCSK9 inhibition merit consideration in this regard.
The actions of pharmacologic agents beyond the original sup-
posed specific target often emerge with time of study. Recent
evidence links PCSK9 to inflammation, and shows that
PCSK9 inhibition affects several processes implicated in
plaque formation and complication. Nevertheless, the molec-
ular pathways through which inflammatory stimuli induce
PCSK9 expression and PCSK9 promotes atherosclerosis re-
main incompletely elucidated. Mounting evidence indicates
that PCSK9 inhibition blunts the pro-inflammatory activation
of EC and VSMC, attenuates plaque oxidative stress and in-
flammation, decreases VSMCmodulation, migration and pro-
liferation, reduces apoptosis of EC, VSMC and macrophage,
and might limit thrombosis, ultimately reducing the propensi-
ty of a plaque to produce a clinical event.

As we further unfold PCSK9’s actions and we develop
highly effective and safe-profile drugs that target this
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molecule, PCSK9 inhibitors might prove effective in other
contexts (e.g., peripheral [108] and carotid artery disease,
acute coronary syndromes, stent restenosis, and cardiomyop-
athies [109]). Consideration of the full palette of the conse-
quences of PCSK9 inhibition could guide this quest and am-
plify our understanding of the underlying mechanisms of po-
tential benefits.
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