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Abstract—The objective of this work was to perform image-
based classification of abdominal aortic aneurysms (AAA)
based on their demographic, geometric, and biomechanical
attributes. We retrospectively reviewed existing demograph-
ics and abdominal computed tomography angiography
images of 100 asymptomatic and 50 symptomatic AAA
patients who received an elective or emergent repair, respec-
tively, within 1–6 months of their last follow up. An in-house
script developed within the MATLAB computational plat-
form was used to segment the clinical images, calculate 53
descriptors of AAA geometry, and generate volume meshes
suitable for finite element analysis (FEA). Using a third party
FEA solver, four biomechanical markers were calculated
from the wall stress distributions. Eight machine learning
algorithms (MLA) were used to develop classification models
based on the discriminatory potential of the demographic,
geometric, and biomechanical variables. The overall classi-
fication performance of the algorithms was assessed by the
accuracy, area under the receiver operating characteristic
curve (AUC), sensitivity, specificity, and precision of their
predictions. The generalized additive model (GAM) was
found to have the highest accuracy (87%), AUC (89%), and
sensitivity (78%), and the third highest specificity (92%), in
classifying the individual AAA as either asymptomatic or
symptomatic. The k-nearest neighbor classifier yielded the
highest specificity (96%). GAM used seven markers (six
geometric and one biomechanical) to develop the classifier.
The maximum transverse dimension, the average wall thick-

ness at the maximum diameter, and the spatially averaged
wall stress were found to be the most influential markers in
the classification analysis. A second classification analysis
revealed that using maximum diameter alone results in a
lower accuracy (79%) than using GAM with seven geometric
and biomechanical markers. We infer from these results that
biomechanical and geometric measures by themselves are not
sufficient to discriminate adequately between population
samples of asymptomatic and symptomatic AAA, whereas
MLA offer a statistical approach to stratification of rupture
risk by combining demographic, geometric, and biomechan-
ical attributes of patient-specific AAA.

Keywords—Abdominal aortic aneurysm, Rupture risk eval-

uation, Image segmentation, Machine learning, Generalized

additive model.

INTRODUCTION

The current clinical management of an abdominal
aortic aneurysm (AAA) is based on assessing its size
and growth by measuring the maximum diameter of
the AAA sac. Clinical intervention is recommended for
AAA with maximum diameter greater than 5.5 cm in
men and in the range of 5.0 to 5.4 cm in women.2 In a
study by Mastracci et al.,17 an 85% mortality rate was
reported for ruptured AAA, while 66% of these deaths
occur prior to an emergent intervention. The use
maximum diameter as the sole predictor of rupture risk
may underscore the importance of other factors, which
may not be evident or easily measured in clinical
images. Darling et al.4 found rupture to occur at theBalaji Rengarajan and Wei Wu have contributed equally to this
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minimum wall thickness. Brown et al.1 found that the
AAA rupture risk for maximum diameter in the range
of 5.0 to 5.9 cm was low and four times greater in
females compared to males. Fillinger et al.7 discovered
that peak wall stress (PWS) in ruptured AAA was
higher than in unruptured AAA, and differentiated the
two aneurysm groups better than maximum diameter,
thereby concluding that PWS was a more accurate
measure of rupture risk than the clinical standard.

Machine learning can be employed to develop sta-
tistical inference based on attributes of a training da-
taset, without relying on predetermined equations,
constitutive models, or other heuristics to make pre-
dictions on out-of-sample data that is equivalent to the
training set in terms of descriptive attributes. Machine
learning algorithms (MLA) have been widely used as
classifiers in surgery and biomedical engineering. Cui
et al.3 applied a Naive Bayes (NB) algorithm to predict
osteonecrosis of the femoral head with cannulated
screw fixation. Farag et al.6 used k-Nearest Neighbor
(KNN) and Support Vector Machine (SVM) to classify
lung nodules. Decision Tree (TREE) was applied by
Min et al.18 to predict survival in patients with distal
bile duct cancer. Lau et al.11 predicted graft failure
after liver transplantation with Random Forest (RF).
Zheng et al.29 used Lasso Linear Logistic Regression
(LASSO) for a classification analysis of various forms
of cancer. Multivariate Adaptive Regression Splines
(MARS) was applied by Wijeysundera et al.27 to
establish a predictive index for renal replacement
therapy after cardiac surgery. Endo et al.5 applied the
Generalized Additive Model (GAM) to analyze the
associations between transfusion ratios and outcomes
(in-hospital mortality and incidence of adverse events).

We hypothesized that using geometric markers (that
describe the AAA size, shape, wall thickness, and
curvature), demographics information (gender), and
biomechanical markers (related to wall stress) will
yield a higher classification accuracy when differenti-
ating asymptomatic from symptomatic AAA com-
pared to maximum diameter alone. In addition to
addressing the aforementioned hypothesis, a second
objective of this work is to compare the classification
performance of eight statistical MLA and select the
best classifier for rupture risk assessment.

MATERIALS AND METHODS

Human Subjects Research Study

The human subjects research protocol for this study
was approved by the Institutional Review Boards at
Allegheny General Hospital (Pittsburgh, PA) and
Northwestern Memorial Hospital (Chicago, IL). As

this was a retrospective review of existing medical re-
cords, informed consent was not required. This study
consisted of two groups, Group I, n = 100 patients
with asymptomatic AAA, who received an elective
repair within 6 months of their last imaging follow up,
and Group II, n = 50 patients with clinical symptoms
or a radiographically confirmed ruptured AAA, who
received an emergent repair within 1 month of their
last imaging follow up. The flowchart of the study
design is shown in Fig. 1. The abdominal computed
tomography angiography (CTA) images of the 150
patients were collected after routine follow up, which
occurred independent of the execution of the research
protocol. These images corresponded to the last CTA
scan prior to the (elective or emergent) repair. The
inclusion criteria was based on the availability of a
CTA exam within 6 months of the repair. We excluded
patients who had received unenhanced (non-contrast)
CT, those in which the last follow up occurred more
than 6 months prior to the repair, and all post-repair
CT. Patient age and gender was also registered from
existing medical records. Research coordinators at
both clinical centers collected the data, de-identified
the images, and assigned alphanumeric case numbers
to each dataset prior to sharing the data with the
investigators.

Image Segmentation and 3D Reconstruction

All segmentations were performed using custom
segmentation scripts written in MATLAB (Mathworks
Inc., Natick, MA), collectively known as AAAVasc
(v1.03, The University of Texas at San Antonio, San
Antonio, TX). Figure 2a illustrates a typical abdomi-
nal CTA image, while Fig. 2b shows a common output
of AAAVasc CTA segmentation in which the lumen,
inner wall, and outer wall contours are visible. The
segmentation algorithms exploit the difference in
contrast between the lumen and the surrounding soft
tissue regions to identify and segment the lumen
boundary by a region-growing method.24 For the outer
wall segmentation, the user selects the best-fitted outer
wall boundary from a set of different possible outer
wall contours generated by the algorithm.24 The inner
wall segmentation approach employs a trained neural
network that infers the inner wall boundary based on a
set of computed image features such as regional image
texture and intensity.16 The segmentation protocol
generates a point cloud with the three boundaries and
outputs volumetric binary masks that contain the lu-
men, intraluminal thrombus (ILT), and wall. The
protocol has been previously validated and imple-
mented to generate patient-specific AAA models for
geometric modeling and finite element analysis
(FEA).16,23,25
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Geometric and Finite Element Modeling

Following image segmentation and binary mask
creation, geometric indices representative of the AAA
size, shape, and wall thickness were calculated using in-
house MATLAB scripts. These geometric markers
together constituted fifty-three 1D size, 2D shape, 3D
size, 3D shape, second-order curvature, and wall
thickness indices, which were calculated for each AAA.
The definition and mathematical formulation of the
markers are included in Appendix A of the Supple-
mentary Material. Two AAA from Group I were ex-
cluded from the geometric modeling protocol due to
segmentation inaccuracies. The spatial distribution of
wall thickness in an exemplary AAA is illustrated in
Fig. 2c. The estimation of AAA wall thickness as an
integral component of this protocol was previously
verified with post-mortem wall thickness measure-
ments.16

The binary masks were used as input to another set
of MATLAB scripts, collectively known as
AAAMesh,23 to generate volume and surface meshes
that take into account the patient-specific wall thick-
ness distribution. The volume meshes consist of
approximately 48,000 to 90,000 quadratic hexahedral

elements and were used with the FEA solver ADINA
(Adina R&D, Inc., Watertown, MA) to compute wall
stress for each AAA at peak systolic pressure. A
Mooney-Rivlin constitutive model was used to repre-
sent the AAA wall material properties, as described by
Raghavan and Vorp.22 For such a model, the strain
energy density is directly proportional to the first
invariant of the left Cauchy-Green deformation tensor,
described by Eq. (1),

W ¼ a I1 � 3ð Þ þ b I1 � 3ð Þ2 ð1Þ

where W represents the strain energy density, I1 the
first invariant of the Cauchy–Green tensor, and a and
b are material constants derived from tensile testing of
AAA wall specimens. With a= 17.4 N/cm2, b= 188.1
N/cm2, and a Poisson’s ratio of 0.499, the second order
Mooney-Rivlin material was implemented for all FEA
models. The results of the FEA simulations were post-
processed with Ansys EnSight (Ansys Inc., Canons-
burg, PA) to calculate four biomechanical markers:
PWS, 99th percentile wall stress (99thWS), 50th per-
centile wall stress (50thWS), and spatially averaged
wall stress (SAWS). These markers are defined in
Appendix B of the Supplementary Material and rep-

FIGURE 1. Flowchart of the study design for the first classification analysis. The second classification analysis used all
geometric and biomechanical markers, while the third classification analysis used the maximum transverse dimension as the only
input variable.
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resent global wall stress metrics for each AAA model.
Details on the finite element modeling protocol,
including mesh sensitivity analyses, boundary condi-
tions, and simulation set up are reported elsewhere.23

Classification Using Machine Learning Algorithms

We used the eight MLA described in
‘‘Introduction’’ section to test their ability to classify
the 148 AAA using the geometric, biomechanical, and
demographic markers as input variables to the algo-
rithms. The leave-one-out cross-validation technique
(LOOCV) was applied to report the accuracy of pre-
diction for all MLA. We also report on the following
performance metrics: area under the curve (AUC) of
the Receiver Operating Characteristic (ROC) curve,
sensitivity, specificity, and precision. Sensitivity is a
measure of the true positive cases, i.e. symptomatic
AAA that are classified correctly. Specificity is a
measure of the true negative cases, i.e. asymptomatic
AAA that are classified correctly. Sensitivity and
specificity measures are used to generate an ROC
curve, from which the AUC is calculated as a measure
of overall classifier performance. Precision, which is
also known as the positive predictive value, is a mea-
sure of the exactness of the prediction. All MLA were

implemented using the statistical computing language
R in the RStudio integrated development environment
(RStudio, Boston, MA).

RESULTS

Demographic, Geometric and Biomechanical Markers

AAA patients in Group I had a mean age of 70 ± 8
years, while those in Group II had a mean age of 72 ±

11 years. Since age was unknown for several patients,
this variable was not used for subsequent statistical
analyses. For Group I, 77% of patients were males and
23% were females, while for Group II, 76% of patients
were males and 24% were females. No other demo-
graphic variable or clinical data were collected for this
study.

The mean and standard deviation of all geometric
markers for Groups I and II are summarized in
Table 1. Of particular clinical interest, Dmaxdir for
Group I was 56.0 ± 12.5 mm, while for Group II it was
75.6 ± 19.4 mm. Symptomatic AAA have a larger
vessel volume (V) and surface area (S) than asymp-
tomatic AAA. ILT volume for Group II (139.4± 116.1
cm3) is more than double that of Group I (63.9 ± 58.5
cm3). The length of the abdominal aorta and length of

FIGURE 2. AAA segmentation and 3D reconstruction. (a) Exemplary abdominal CTA image; (b) contours of the lumen (red
points), inner wall (black crosses), and outer wall (black points) generated during segmentation using AAAVasc; (c) a
reconstructed AAA model with non-uniform thickness (in mm).
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the AAA sac for Group II (L = 133.8 ± 22.7 mm, Lsac

= 98.6 ± 30.8 mm) were 18 and 25% greater than for
Group I (L = 113.6 ± 19.1 mm, Lsac = 78.6 ± 25.3
mm), respectively. Symptomatic AAA have thicker
walls than asymptomatic AAA: Group II exhibited
THmax = 4.5 ± 1.9 mm, THave = 2.0 ± 0.6 mm, and
THDmax = 2.1 ± 0.7 mm, while Group I yielded
THmax = 3.9 ± 2.2 mm, THave = 1.8 ± 0.6 mm, and
THDmax = 1.9 ± 0.7 mm. IPR and MAA, which are
markers that describe the shape and curvature of the
AAA wall, were found to be similar for both groups:
Group I (IPR = 5.3 ± 0.4 and MAA = 0.03 ± 0.01)
and Group II (IPR = 5.3 ± 0.4 and mean MAA =
0.02 ± 0.01).

The mean and standard deviation of the biome-
chanical markers for Groups I and II are summarized
in Table 2. All global wall stress metrics were found to
be higher for Group II compared to Group I. For
example, PWS was 43% higher for Group II (139.9 ±

57.7 N/cm2) than Group I (97.5 ± 43.6 N/cm2); Group
II had a 35% greater SAWS (29.7 ± 10.8 N/cm2) than
Group I (22.0 ± 7.5 N/cm2).

Machine Learning Classification

In each classification exercise, the MLA resulted in a
probability of rupture between 0 and 1. The proba-
bility threshold used for statistical assessment of the
classification performance was 0.5, namely a proba-
bility of rupture ‡ 0.5 was considered to be the positive
response class (i.e. a ruptured and/or symptomatic
AAA), whereas a probability of rupture < 0.5 was
identified as the negative response class (i.e. an
asymptomatic, unruptured AAA).

Classification with Variable Pre-selection

The first classification analysis was performed with
the markers summarized in Table 3 with the objective
of pre-selecting the input variables that achieved the
highest classification accuracy for each MLA. TREE
used only one variable (Dmaxdir) to build the classifier.
NB, KNN, and RF used all 57 markers as classifiers to
differentiate between the two groups (two indices,
Pabove and Pbelow were found to be highly collinear and
thus one was removed from the analysis, reducing the
initial set of 58 markers to 57). Variable pre-selection
was used by MARS, from which GAM and SVM built
their classifier based on the following seven markers
(six geometric and one biomechanical): Dmaxdir,
THDmax, THmedian, THmaxvar, Pabove, Dave, and SAWS.
Appendix C of the Supplementary Material describes
the variable pre-selection methods used by each MLA.

TABLE 1. Quantitative summary (mean 6 standard
deviation) of all geometric markers for Groups I (electively

repaired AAA) and II (emergently repaired AAA).

Geometric marker

Group I Group II

Mean SD Mean SD

Dmax (mm) 52.83 12.09 69.95 18.18

Dmaxdir (mm) 55.96 12.52 75.59 19.43

Dave (mm) 42.39 11.13 55.43 17.72

Dmin (mm) 28.35 8.24 33.13 13.64

Dneck.p (mm) 30.67 9.65 31.98 7.36

Dneck.d (mm) 35.35 20.90 45.76 17.18

H (mm) 100.24 15.14 113.89 17.52

L (mm) 113.57 19.09 133.78 22.69

Hneck (mm) 28.93 21.80 26.01 17.24

Lneck (mm) 35.02 24.40 35.15 21.29

Hsac (mm) 71.31 21.97 87.88 26.44

Lsac (mm) 78.55 25.29 98.63 30.79

Hb (mm) 57.41 18.67 64.52 20.65

dc (mm) 6.13 5.50 7.39 5.59

dc.max (mm) 7.65 5.21 9.97 5.94

THmin (mm) 0.62 0.38 0.58 0.44

THmax (mm) 3.93 2.24 4.54 1.92

THave (mm) 1.81 0.57 2.01 0.61

THDmax (mm) 1.88 0.68 2.13 0.70

THmode (mm) 1.79 0.65 2.01 0.65

THmedian (mm) 1.80 0.58 2.01 0.62

THminvar (mm) 0.03 0.04 0.04 0.04

THmaxvar (mm) 1.14 1.31 1.28 1.02

THmedianvar (mm) 0.13 0.18 0.15 0.17

THmodevar (mm) 0.04 0.06 0.04 0.04

THmeanvar (mm) 0.22 0.24 0.26 0.22

Pbelow 50.24 5.99 49.59 3.33

Pabove 49.76 5.99 50.41 3.33

TTave (mm) 5.39 3.95 7.57 4.59

TTmax (mm) 18.90 10.82 27.2 13.66

TTmin (mm) 9.08e22 0.30 9.51e22 0.20

TTminLoc (mm) 0.54 0.38 0.68 0.35

TTmaxLoc (mm) 0.37 0.22 0.40 0.26

DHr 0.54 0.14 0.61 0.13

DDr 1.80 0.47 2.24 0.61

Hr 0.28 0.21 0.24 0.17

BL 0.57 0.16 0.57 0.17

b 0.89 0.09 0.90 0.07

bmin 0.85 0.08 0.84 0.08

T 1.11 0.06 1.14 0.08

Cave 1.02 0.02 1.03 0.02

Cmax 1.10 0.07 1.19 0.25

Cmin 1.0 0.00 1.00 0.00

V (cm3) 166.01 103.81 328.07 211.47

S (cm2) 152.65 52.18 234.48 91.17

VILT (cm3) 63.93 58.51 139.43 116.16

c 0.35 0.18 0.40 0.18

IPR 5.30 0.41 5.25 0.37

NFI 1.06 0.04 1.06 0.06

GAA 5.16e25 1.67e24 5.64e25 2.04e24

MAA 0.03 0.01 0.02 0.01

GLN 2.72 1.07 3.55 1.85

MLN 0.33 0.04 0.38 0.10

The definition and mathematical formulation of these markers is

included in Appendix A of the Supplementary Material.
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Table 4 includes the performance metrics of all
MLA listed in ascending order of accuracy. GAM
exhibited the highest accuracy (87%), AUC (89%),
and sensitivity (78%), and the third highest specificity
(92%), with a precision of 83%—the highest amongst
the MLA that had sensitivity in excess of 50%; it is
considered the best performing classifier of asymp-
tomatic vs. symptomatic AAA for this study. TREE’s

accuracy was 79%, with a high sensitivity of 74%,
although it had a low specificity (82%) and the lowest
AUC (60%). One advantage of using TREE as a
classifier is the output of an optimal threshold for the
variables in the classifier: Dmaxdir = 6.5 cm classified
the two groups with a maximum accuracy of 79%.
MARS’ accuracy was 71% and has a higher AUC than
TREE (75%); however, its sensitivity was 52% and it
had the lowest specificity at 81%. NB, LASSO and RF
had similar accuracies (75–79%), AUC (79–83%),
specificities (87–94%), and sensitivities (50–54%).
KNN and SVM are inefficient in predicting symp-
tomatic AAA as the sensitivities for both MLA are low
(KNN = 46%, SVM = 30%). In addition, SVM had
the lowest accuracy amongst all MLA. KNN had the
highest specificity of all MLA, making it effective in
classifying asymptomatic AAA. Figure 3 illustrates the
ROC curves for each MLA where it becomes evident
that the curve for GAM encloses the other seven MLA
at nearly every point, which is verification of its highest
AUC.

Classification with Dmaxdir as the Only Input Variable

The second classification analysis was performed
with Dmaxdir as the only input variable for all MLA,

TABLE 2. Quantitative summary (mean 6 standard
deviation) of all biomechanical markers.

Biomechanical marker (N/cm2)

Group I Group II

Mean SD Mean SD

PWS 97.45 43.63 139.92 57.71

99thWS 50.14 16.79 66.94 20.94

50thWS 22.36 8.32 30.60 11.39

SAWS 22.03 7.53 29.71 10.84

The markers are peak wall stress (PWS), 99th percentile wall

stress (99thWS), 50th percentile wall stress (50thWS), and

spatially averaged wall stress (SAWS). These are global stress

metrics calculated from the spatial distributions of wall stress

obtained from finite element analysis of each AAA model. The

definition of these markers is included in Appendix B of the

Supplementary Material.

TABLE 3. Variables used by the machine learning algorithms, which were pre-selected for TREE, LASSO, MARS, SVM, and GAM
to yield the highest accuracy of classification (see Appendix C in the Supplementary Material).

Variable

Machine learning algorithm

TREE NB KNN RF LASSO MARS SVM GAM

Dmaxdir X X X X X

Dave X X

Lsac X

THDmax X X X X

THmedian X X X

THmaxvar X X X X

THmodvar X

THmin X

Pabove X X X

TTmax X

TTmin X

TTminLoc X

DDr X

b X X

Cmax X

Cmin X

IPR X X

NFI X

MLN X

PWS X

99thWS X

50thWS X

SAWS X X X

Gender X

All 57 geometric, biomechanical, and demographic markers X X X

NB, KNN, and RF do not make use of variable pre-selection algorithms.
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given the importance of the clinical standard of care
for rupture risk assessment. Table 5 describes the
quantitative performance metrics of all MLA, where
MARS exhibited the highest accuracy (80%) and AUC
(80%). LASSO yielded the highest sensitivity (82%),
while SVM and NB produced the highest specificity
(90%). The ROC curves for all the MLA are illustrated
in Fig. 4, where NB, GAM, and RF appear to out-

perform the other classifiers based on their compara-
tively high AUC.

Classification with all Geometric, Biomechanical,
and Demographic Markers as the Input Variables

A third classification analysis was performed using
all 57 markers as the input variables for each MLA
(i.e., no variable pre-selection methods were applied),
the results of which are summarized in Appendix D of
the Supplementary Material. Table D1 describes the
quantitative performance metrics of all MLA, while
the ROC curves are shown in Fig. D1.

DISCUSSION

We performed classification analyses of AAA based
on the discriminatory potential of their demographic,
geometric, and biomechanical characteristics. We tes-
ted the hypothesis that using these AAA attributes
would yield an improved classification rate compared
to the clinical standard of maximum diameter. Eight
MLA were applied to a data set of 98 asymptomatic
and 50 symptomatic/ruptured aneurysms, and the
performance metrics of the algorithms were compared
to determine the best overall classifier. To the authors’
knowledge, this is the first study on a comprehensive
comparison of statistical supervised learning tech-
niques applied to AAA classification using geometric,
demographic, and biomechanical markers. We previ-
ously used MLA to classify ruptured and unruptured
AAA using only geometric markers of size, shape, and
wall thickness,20,25 and surface curvatures.13 We found
that the overall accuracy of the algorithms (GAM,
MARS, KNN, RF, NB, TREE, LASSO and SVM)
was moderate to high, ranging from 69 to 87%, when
using variable pre-selection and a probability threshold
of 0.5 [i.e., P(Rupture) ‡ 0.5] considered as the positive

TABLE 4. Quantitative performance metrics of the eight machine learning algorithms applied with variable pre-selection,
presented in increasing order of overall classification accuracy with a probability threshold of 0.5.

MLA Accuracy AUC Sensitivity Specificity 95% CI p Value [Acc > NIR] Kappa Precision

SVM 0.69 0.72 0.30 0.89 (0.61, 0.76) 0.2736 0.2128 0.58

MARS 0.71 0.75 0.52 0.81 (0.63, 0.78) 0.1287 0.3343 0.58

NB 0.75 0.80 0.52 0.87 (0.67, 0.82) 0.0134 0.4094 0.67

RF 0.77 0.83 0.54 0.89 (0.69, 0.84) 0.0028 0.4545 0.71

KNN 0.79 0.79 0.46 0.96 (0.72, 0.85) 0.0004 0.4724 0.85

TREE 0.79 0.60 0.74 0.82 (0.72, 0.85) 0.0004 0.5430 0.67

LASSO 0.79 0.79 0.50 0.94 (0.72, 0.85) 0.0004 0.4838 0.81

GAM 0.87 0.89 0.78 0.92 (0.81, 0.92) 0.0000 0.7088 0.83

AUC represents the area under the curve for the receiver operating characteristic curves illustrated in Fig. 3. NIR stands for no-information-

rate, which was 0.66 in our dataset for these LOOCV studies. Except for SVM and MARS, the remaining classifiers resulted in a minimum

accuracy (based on their 95% confidence intervals) that surpassed the NIR. GAM had the highest accuracy and the highest Kappa, at 87%

and 0.7088, respectively.

FIGURE 3. Receiver operating characteristic (ROC) curves
of the eight machine learning algorithms applied for AAA
classification analysis using variable pre-selection (see
Appendix C of the Supplementary Material). The methods
are Naive Bayes (NB), k-Nearest Neighbor (KNN), Decision
Tree (TREE), Random Forest (RF), Support Vector Machine
(SVM), Lasso Linear Logistic Regression (LASSO),
Multivariate Adaptive Regression Splines (MARS), and
Generalized Additive Model (GAM). A quantitative
comparison of these algorithms based on global
performance metrics is included in Table 4, where GAM
yielded the highest accuracy, area under the curve (AUC)
and sensitivity, and the second highest specificity.
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categorical class. However, the sensitivity, which is the
correct prediction rate for symptomatic AAA, was
disappointingly low, ranging from 30 to 78%. GAM,
which was the best overall classifier, had a high true
negative detection probability or specificity (92%),
which ensured a high classification rate for asymp-
tomatic AAA. It is anticipated that sensitivity and
specificity can be optimized further for any given
classifier by virtue of appropriate selection of MLA-
specific probability thresholds based on ROC analyt-
ics. However, the latter was beyond the scope of this
feasibility study, which was focused on comparing the
classification performance of MLA and interrogating
whether using demographic, geometric, and biome-
chanical markers would yield a higher classification
rate than a maximum diameter based approach.

GAM, which is an extension of generalized linear
models (GLM), assumes that the dependent variables
are represented as nonlinear additive functions of the
independent variables. GLM force linearity on the
data, whereas GAM allows for nonlinearity of the
data, establishing the underlying detailed data pat-
terns. Two modeling aspects are considered in GAM:
which variables should be included in the classifier and
how smooth should be the distribution of a variable.9

The speedy classification of GAM is due largely to its
use of an adaptive back-fitting procedure, similar to
that used in MARS, to guide the selection of variables
and identify their optimal degree of smoothing.12 The
disadvantages of using GAM is the possibility of
overfitting and the difficulty of analyzing the response
of each predictor independently.

Supervised learning has been used previously to
assess AAA rupture risk. Polzer and Gasser21 quanti-
fied rupture risk based on a probabilistic rupture risk
index (PRRI) that resulted in an AUC of 84%. They
reported on the use of PRRI as the sole predictor of
rupture risk and that the directly measured maximum
diameter had no contribution to this risk. Conversely,
the best performing classifier in the present study,
GAM, had an AUC of 89% and used Dmaxdir as one of
the primary predictors for the classification. Leemans
et al.14 assessed rupture risk using the directly mea-
sured maximum diameter and three biomechanical
parameters (PWS, peak wall rupture index, and the
rupture risk equivalent diameter), yielding an AUC of
85.5%. Tang et al.26 used stepwise multivariate logistic
regression to predict rupture and obtained a 64%
probability of true prediction, 79% specificity, and an
AUC of 75%. Logistic regression is based on the
assumption that the predictor and the response vari-
able have a linear relation, which is not true in many
clinical applications. By using a nonlinear predictive
model, such as GAM, and patient-specific wall thick-
ness, we obtained a comparatively improved classifier
of AAA; this comparison is illustrated in Fig. 5 by
means of ROC curves and AUC.

GAM uses seven markers to classify the two AAA
groups, of which three (SAWS, Dmaxdir, and THDmax)
were identified as the most influential for AAA clas-
sification. These are categorized as a biomechanical
marker (SAWS), a 1D global size marker (Dmaxdir),
and a 1D local size marker (THDmax). Wall stress
measures such as PWS are used extensively in biome-
chanics research to assess AAA rupture risk.7,10,15,28

However, PWS is strongly dependent on the quality of
the volume mesh used for FEA and the local wall
thickness of the AAA, which can lead to an overesti-
mation of the true maximum stress. SAWS is wall
stress averaged over the local surface area of the AAA
and is thus a weighted measure of mean wall stress.

TABLE 5. Quantitative performance metrics of the eight
machine learning algorithms using Dmaxdir as the only input

variable.

MLA Accuracy AUC Sensitivity Specificity

SVM 0.69 0.72 0.28 0.90

NB 0.72 0.79 0.38 0.90

MARS 0.74 0.74 0.56 0.83

RF 0.74 0.75 0.68 0.77

LASSO 0.41 0.51 0.82 0.20

TREE 0.79 0.60 0.74 0.82

KNN 0.79 0.73 0.68 0.85

GAM 0.78 0.79 0.58 0.88

AUC values correspond to the ROC curves illustrated in Fig. 4.

FIGURE 4. Receiver operating characteristic (ROC) curves
of the eight machine learning algorithms using Dmaxdir as the
only input variable. A quantitative comparison of these
classifiers based on global performance metrics is included
in Table 5.
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99thWS and 50thWS are not true measures of wall
stress but rather percentiles calculated mathematically.
Therefore, SAWS may be a more suitable biomechan-
ical discriminator of asymptomatic and symptomatic
AAA, since it is related to the surface area of the an-
eurysm wall. Wall stress is strongly influenced by wall
thickness,19 while thin-walled AAA regions are ex-
posed to high wall stress and are at high risk for rup-
ture.8 In addition, AAA rupture is known to occur at
regions of low wall thickness.4 Dmaxdir represents the
maximum diameter measured as the largest distance
between two points on any AAA sac cross section,
thereby being the equivalent of the clinical standard of
care. Noteworthy is that TREE, which yielded the
second highest MLA accuracy (79%), used Dmaxdir as
the sole variable for classification. In addition, TREE
predicted that the maximum diameter for optimal
classification of the two groups is 6.5 cm, in contrast to
the clinical standard of 5.0–5.5 cm. This suggests that a
maximum diameter of 6.5 cm is an improved discrim-
inator of asymptomatic and symptomatic AAA, com-
pared to the standard of care, for the population
sample of 148 AAA in this study.

To address the main hypothesis of this work, the
other seven MLA were applied using Dmaxdir as the
only variable used to build the classifier. A comparison
of the two classification analyses (Tables 4 vs. 5)
showed that using Dmaxdir as the sole discriminator is
less accurate than using a combination of biome-

chanical and geometric markers. For example, GAM,
which had the highest accuracy at 87% using seven
input variables, was 78% accurate when using Dmaxdir.
A further analysis of the GAM Dmaxdir classifier re-
vealed 22 AAA misclassified: 4 false negatives (symp-
tomatic AAA that were misclassified as asymptomatic)
and 18 false positives (asymptomatic AAA that were
misclassified as symptomatic). The false negatives had
a mean Dmaxdir of 55.95 mm, which is comparable to
the mean Dmaxdir of Group I (55.96 mm). Similarly, the
false positives had a mean Dmaxdir of 67.78 mm, which
is comparable to the mean Dmaxdir of Group II (75.59
mm). This yields a reasonable explanation for why the
maximum diameter criterion failed to classify correctly
these 22 AAA. Conversely, the mean SAWS for the
false negatives was 31.32 N/cm2, which is comparable
to the mean SAWS of Group II (29.71 N/cm2), while
the mean SAWS for the false positives was 20.56 N/
cm2, which is comparable to the mean SAWS of Group
I (22.03 N/cm2). Using SAWS as the only input vari-
able for GAM resulted in the 22 AAA classified cor-
rectly, given the similarity of this biomechanical
marker with the corresponding means for Groups II
(for the false negatives) and I (for the false positives).
Therefore, the complex shape of the AAA sac cannot
be adequately represented only by Dmaxdir. Rather, it
should be quantified by five additional geometric
markers that can discriminate between symptomatic
and asymptomatic AAA (THDmax, THmedian,
THmaxvar, Dave, and Pabove) when Dmaxdir alone cannot.

Using variable pre-selection methods resulted in
more accurate classification outcomes compared to
using all 57 markers in the classifiers (Tables 4 vs. D1).
One additional comparative analysis was performed
with GAM using its six geometric markers to build the
classifier vs. using its sole biomechanical marker for
classification. The outcome of this analysis is described
in Appendix E of the Supplementary Material.
Tables E1 and E2 reveal the nonlinearity of the vari-
ables in the model, while Table E3 shows that geo-
metric or biomechanical markers by themselves cannot
achieve the same accuracy as its combined use in the
classifier. This is further corroborated in Fig. E1,
which illustrates the highest AUC is obtained when all
7 markers are used to build the classifier.

The present work is subject to several important
limitations. There is suspected inter-observer variabil-
ity in the segmentation of the clinical images, although
its effect on the geometric and biomechanical markers
was not quantified. There is also variability in the pixel
size of the CTA images amongst the medical records.
Since wall thickness estimation is bounded by the pixel
size and the intensity gradient across the wall, the
larger the pixels, the less precise is the ensuing wall
thickness prediction. The exclusion of ILT in the FEA

FIGURE 5. The GAM ROC curve is compared to the ROC
curves obtained from the data analyses conducted by Tang
et al.,26 Polzer et al.,21 and Leemans et al.,14 who also
performed discriminatory analyses of ruptured/symptomatic
and unruptured/asymptomatic AAA. These discriminatory
analyses14,21,26 were not based on using the same
combination of geometric, biomechanical, and demographic
markers as in the present work.
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modeling limits the results of the study to stresses
predicted only by wall mechanics. This limitation likely
yields an over prediction of PWS, 99thWS, 50thWS,
and SAWS, as ILT tends to provide the wall with a
mechanical barrier to the normal forces caused by
blood pressure. The quantification of geometric indices
a priori is another limiting aspect of our geometry
quantification approach. There could be size and shape
measures important for differentiating individual AAA
that are not taken into account by our methodology
but that could be predicted by using other techniques.
It is possible to use additional AAA attributes, such as
tissue composition metrics (obtained from immuno-
histochemistry), which would be subject to the avail-
ability of AAA wall specimens for subsequent
histological analysis. Finally, the classification analyses
presented in this work could be adopted as a rupture
risk assessment strategy. This is justified by the fact
that all AAA in Group I were asymptomatic, unrup-
tured, and patients received an elective repair within 6
months of the last CTA follow up. Conversely, all
AAA in Group II were symptomatic and patients re-
ceived an emergent repair within 1 month of the last
CTA follow up; however, not all had a confirmed
rupture visible in the clinical images.

In summary, for AAA classification based on geo-
metric, demographic, and biomechanical markers,
GAM showed the highest accuracy (87%), prediction
probability for symptomatic AAA (78%), and third
highest prediction probability for asymptomatic AAA
(92%), amongst eight supervised learning techniques
evaluated. Six geometric markers (Dmaxdir, Dave,
THDmax, THmedian, THmaxvar, Pabove) and one biome-
chanical marker (SAWS) yielded the best overall per-
formance of the GAM classifier. Such performance is
comparatively superior to using only geometric or
biomechanical markers. Using patient-specific geo-
metric and biomechanical attributes, and a nonlinear
predictive model for the MLA classifier, yields a clas-
sification accuracy (87%) greater than maximum
diameter alone (78%). Implementing MLA as classi-
fiers for rupture risk assessment is clinically feasible
since the computational times required to execute the
algorithms are relatively low: a few minutes on a
standard Windows personal desktop for the sample
size of 148 AAA used in this work. In addition, the
classification accuracy increases concomitantly with
the size of the training dataset. Hence, one can envision
a large database of AAA demographic, geometric and
biomechanical features, created from thousands of
unruptured and ruptured AAA. The database would
be used to train a MLA classifier and test it on every
new diagnosed AAA with the purpose of assessing its
rupture risk based on the ‘‘likeness’’ of the new AAA
to either the unruptured or the ruptured group.
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