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Abstract
In driving studies based on simulators and instrumented vehicles, specific models are needed to
capture key aspects of driving data such as lateral control. We propose a model that uses weighted
polynomial projections to predict each data point from the previous three time points, and
accommodates the attempts of the drivers to re-center the vehicle before crossing the borders of
the traffic lane. Our model also allows the possibility that average position within the lane may
vary from driver to driver. We demonstrate how to fit the model using standard statistical
procedures available in software packages such as SAS. We used a fixed-based driving simulator
to obtain data from 67 drivers with Alzheimer’s disease and 128 elderly drivers without dementia.
Using these data, we estimated the subject-specific parameters of our model, and we compared the
two groups with respect to these parameters. We found that the parameters based on our model
were able to distinguish between the groups in an interpretable manner. Hence, this model may be
a useful tool to define outcomes measures for observational and interventional driving studies.
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1. INTRODUCTION
In studies using driving simulators and instrumented vehicles, information on lateral
position is measured and recorded at high frequencies (e.g., 10–60 frames/sec), allowing
investigators to analyze lateral vehicular control. It is often desirous to reduce the complex
time-series patterns of lateral position to individual metrics of lateral control, so that
important research hypotheses can be tested in a straightforward manner. For example,
regression models and other traditional statistical methods could be used to predict lateral
control parameters as a function of such covariates as age, gender, disease status,
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intervention status, environmental conditions, and measures of vision, cognition, and motor
skills.

Many approaches already exist to reduce the high-frequency lateral position data to
individual parameters. Some are very simple and straightforward, such as the rate at which
the lane markings are crossed and the overall standard deviation of lane position. Others
involve complex time-series analyses, which seem to provide a natural foundation for
modeling lateral control data. In general, time series procedures can be classified as either
frequency domain (e.g., Fourier transform/spectral analyses, wavelet analyses) or time
domain (e.g., autoregressive models, moving average models, state space models). In this
report, we are primarily interested in modeling the temporal progression of a lateral control
series, as opposed to characterizing the prominent periodicities and frequencies of the series;
hence, our emphasis will be on the time domain approach.

To investigate and compare the statistical properties of these approaches, and to propose
additional approaches for consideration, specific models of lateral position data are needed.
Such models should accommodate the fact that lane boundaries exist that encourage the
driver to re-center the vehicle as the boundaries are approached or crossed. These models
should also allow individual drivers to have their preferred position within the traffic lane. In
this paper, we propose a class of time-series models which meet these criteria, and we show
how to fit a specific subclass of this model using available statistical software. We then use
data from a study of elderly drivers to illustrate how to compare two groups (those with and
without Alzheimer’s disease) based on estimated parameters from our model, and we
contrast those results with those based on other existing methods.

2. METHODS
2.1 Proposed Model

For an individual drive, assume that the lane position at time t is denoted by Yt. On a
coordinate plane, let the time t = 0, 1, 2,…, T be represented on the horizontal axis and Yt be
represented on the vertical axis (see Figures 1 and 2). Let the value of Yt = 0 correspond to
situations when the center of the vehicle is in the center of the driving lane, let values of Yt >
0 correspond to when it is left of center (from the driver’s perspective), and let values Yt < 0
correspond to when it is right of center. Hence, increasing values of Y indicate that the
vehicle is heading towards the left shoulder, while decreasing values of Y indicate that the
vehicle is heading towards the right shoulder.

Our general model is a third-order autoregressive time series model (Kendall and Ord, 1990)
with a signed error term. That is, for t>3, let

(1)

(2)

and

(3)
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In this general model, g(.) is an unknown function which predicts the lateral position at time
t based on the position observed at the three previous time points; et is normally distributed
residuals (errors) between observed and predicted position at time t; σ2 is the variance of et;
and It is a sign indicator, equaling −1 and 1 with probability pt and 1−pt, respectively. In this
general model, the functional form of pt is unspecified. However, when modeling the lateral
position of a safe driver, it would be logical to have pt increase as Yt goes from 0 to positive
values, since high values of Yt would indicate that the car is drifting to the left out of the
correct traffic lane, so a high probability of a negative error (i.e., It = −1) would be needed to
re-center the vehicle towards the right. Similarly, if Yt is decreasing from 0 to negative
values, this indicates that the driver is drifting towards the right shoulder, so one would want
pt to be low, so that the probability of a positive error would be high, causing the vehicle to
re-center back towards the left.

With Equations 1–3 as a general model, we now introduce a series of reparameterizations
and constraints to produce a specific subclass of models. We reparameterize the vector,
(Yt−1, Yt−2, Yt−3), to the vector, (W1t, W2t, W3t), by letting

(4)

(5)

and

(6)

In this reparameterization, W1t is a flat projection from time t−1 to time t based on the
previous value; W2t is a linear projection based on the previous three values (the middle
value is ignored in a slope calculation when the points are evenly spaced); and W3t is a
quadratic projection based on the previous three values. We also replace the general function
g(.) with a partially-specified function f(.), which is a linear combination of the above
projections, i.e.,

(7)

It can be shown that the (W1t, W2t, W3t) vector is a linear transformation of the general (Yt−1,
Yt−2, Yt−3) vector; hence, this reparameterization does not really change the model.
However, by considering the overall projection as a linear combination of flat, linear, and
quadratic projections, it may add insight to the interpretation of the model. As a hypothetical
example, Figure 3 shows four potential predictions of the value at time t=4 as a function of
the values at times t=1, t=2, and t=3. If one driver’s lateral position is well-modeled by the
quadratic projection (i.e., β1=0, β2=0, β3=1; see the top dashed line in Figure 2), while
another’s position is well-modeled by a linear projection (β1=0, β2=1, β3=0; the second-
from-top dashed line in Figure 2), then it could be interpreted that the first subject may have
worse driving, since variations in lateral position tend to be exaggerated. If a third driver’s
data is well-modeled by the projection setting of (β1=0, β2=1/3, β3=2/3), as shown in the
dotted line in Figure 2, then that driver’s driving performance would be judged as being
between the other two.
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In Equations 4–7, the functional form of f(.) is assumed only to be linear in β1, β2, and β3.
However, the representation shown in Figure 3 suggests that it may be reasonable to predict
future lateral position by using weighted averages of the flat, linear, and quadratic
projections. This approach was used in simulations in previous studies (Dawson et al, 2006).
In order to force this subclass of linear functions, we impose the following constraints:

(8)

and

(9)

In addition to the above constraints, we need to specify a functional form of pt, which is the
probability that a negative difference will be seen when subtracting the predicted
observation from the observed observation at time t. Many functional forms could be used,
but we propose using a simple logistic model:

(10)

where log(.) is the natural log function (base e); γ0 is the intercept of the logistic model; γ1 is
the slope of the logistic model; and Yt−1 is the observed lateral position at the previous time
point.

Note that the higher the value of γ1, the greater the tendency for a driver to turn back
towards the center as the vehicle approaches or crosses a lane boundary. Hence, this could
be termed a “re-centering” parameter, and high values of γ1 would tend to indicate better
drivers. The intercept, γ0, can be thought of as a default position parameter, in that it
accommodates the manner in which some drivers tend to stay on center, while others tend to
ride closer to one lane boundary or the other. When γ0=0, the vehicle has an average position
at the center of the lane, while positive values of γ0 will correspond to the vehicle tending to
be right of center and negative values of γ0 will correspond to the vehicle tending to be left
of center.

Part of the motivation for our proposed model was the fact that drivers feel a greater need to
make correction in their steering when distance to the lane boundary decreases. Although
our model does not use this distance as a parameter, certain distance measures of interest can
be estimated based on the γ parameters of the model. Specifically, additional insight to the
driving behavior of an individual can be found solving Equation 10 for Yt−1, i.e.,

(11)

Hence, after estimates of γ0 and γ1 are obtained, one can find the lateral lane position that
would correspond to specific probability of having a negative residual. For example, the
value of Yt−1 when pt = 0.50 should correspond approximately to the driver’s average
position in the lane, since the error term has a 50/50 chance of being positive and negative.
The value when pt = 0.05 would indicate the lateral position where there is only a 5%
chance of a negative residual (i.e., which would tend to lead the vehicle back towards to the
left), and the value when pt = 0.95 would indicate the lateral position where there is a 95%
chance of a negative residual (i.e., tending to turn back to the right). We will label these
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three lateral positions obtained in this manner, as the “lateral mid-point” and the “5/95
boundaries.”

2.2 Fitting the Model
To illustrate a method for estimating the parameters of our model, we now provide a step-
by-step guide for fitting our model to an individual’s data in SAS (2007, SAS Institute,
Cary, NC). However, a variety of software packages could be used. The steps are as follows:

1. Create a dataset with time (t) and lane position (y), sorted by time.

2. Calculate the first-, second-, and third-order lags of y.

3. Based on the lags, create the flat, linear, and quadratic projections using equations
4–6, naming them, say, flat, lin, and quad.

4. To constrain the β estimates to sum to 1, estimate two of the three, so that the third
can be found by subtraction. For example, create the following variables, y_flat = y
- flat, lin_flat = lin - flat, and quad_flat = quad – flat, and then fit the model,
“y_flat = quad_flat lin_flat,” without an intercept. This regression model does not
estimate β1 directly, but this term will be obtained indirectly by subtraction.

5. Check if the estimates of β2, β3, and β2+β3 are each in [0,1] range. If all three of
these quantities are in this range, then accept the estimates as they are and obtain
the estimate of β1 by subtraction. If they are out of range, then remap them to the
parameter space appropriately. For example, if an estimate of β2 or β3 is negative,
then assign it the value of 0. If β ̂1+β ̂2>1, then subtract (β ̂1+β ̂2 − 1)/2 from each so
that they sum to exactly 1.

6. Based on the estimated values of β1, β2, and β3, calculate predicted values of y, that
is, ŷ = (flat)β̂1+ (lin)β̂2+ (quad)β̂3. Calculate residuals, y − ŷ, noting the sign.

7. Calculate the standard deviation of the residuals, and let this be an estimate of σ.

8. Create an indicator variable for negative residuals (i.e., 1 for negative and 0 for
positive), and let that be predicted by the first-order lag of y in a logistic regression
model. The intercept and slope terms from the logistic model correspond to
estimates of γ0 and γ1, respectively.

For several drivers, perform all of the above operations separately for each driver (using
“by” statements in SAS), and then look for associations between covariates of interest and
the parameters of the model using the appropriate statistical procedure. An example of the
SAS syntax for the above steps is given in the Appendix.

2.3 Entropy
Boer (2000) proposed an entropy metric of steering variability to measure the effect of
excess workload on drivers. Dawson et al (2006) illustrated that this could also be applied to
lane position data. In Boer’s method, a second-order Taylor series expansion is used to
predict the value of the response at time t, based on the three immediately preceding values.
It can be shown that this Taylor series prediction is equivalent to Equations 4–7 in the
present paper if β1=0, β2=1/3, and β3=2/3 (see Figure 3). From this projection, a set of
prediction errors (residuals) are calculated. The 95th percentile of the distribution of the
predictions errors is labeled as x (Boer used α). Nine bins are then defined according to eight
borders: −5x, −2.5x, −x, −0.5x, 0.5x, x, 2.5x, and 5x. Finally, these bins are used to calculate
entropy, as H = Σ−Pi log9 (Pi), where H is the entropy, scaled between 0 and 1, and Pi is the
observed proportion of prediction errors in bin i (not the same as pt). The bins are often
defined from a baseline situation, with the entropy calculated for a second interval; however,
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the method can also be applied to a single interval of data (Boer, personal communications).
For comparing two groups, an additional modification of this entropy method is to take the
average 95th percentile of prediction error distributions within one group, and use this x to
define fixed bin widths that are used for calculating the entropy measure.

2.4 Data Example
We obtained data from a driving simulator known as SIREN (“Simulator for
Interdisciplinary Research in Ergonomics and Neuroscience”). This fixed-base simulator
captures lane position data at 30 frames per second (Rizzo, 2004). We enrolled 67 drivers
with Alzheimer’s disease (AD) and 128 elderly drivers who were neurologically normal. See
Uc et al (2006) for more details of the study. All participants provided signed informed
consent and the study was approved by the University of Iowa Institutional Review Board.

We used data from a straight-road segment of approximately 3.2 kilometers in length. Figure
1 shows 60 seconds of data from an AD subject, illustrating excessive variability and several
lane crossings. Figure 2 shows data from an elder driver without AD, with less variability.
Note that since the vertical axis is in meters and the horizontal axis is in seconds, the graphs
are not truly geographical, thus giving an exaggerated picture of the lateral swerves.

Our outcome of interest was the lateral position of the center of the vehicle. Our original
data was sampled at 30 Hz. For the purposes of our analyses, we averaged the lane position
data over consecutive, non-overlapping five-frame blocks, resulting in 6-Hz sampling. We
fit our model to each driver using the algorithm presented in Section 2.2, estimating his/her
values of the regression coefficients for projections (β1, β2, and β3), the error variance (σ2),
the default position parameter (γ0), and the re-centering vigilance parameter (γ1). We also
estimated Boer’s entropy for each subject, both using subject-specific bins, as well as a
fixed-bin approach based on the average 95th percentile of the prediction error distributions
in the non-AD group. We also computed the mean, standard deviation, skewness, and
kurtosis estimates for each driver’s prediction error distribution that was obtained during the
entropy calculations. We also computed the simple standard deviation of the lane position,
as well as rate at which the wheels of the vehicle crossed the lane markings. Finally, using
Equation 11 in the manner described in Section 2.1, we calculated the lateral mid-points and
the 5/95 boundaries at the mean values of the estimates of γ0 and γ1 within each group.

Each of the measures of variability was calculated for each subject, with the mean and
standard deviation of these measures calculated for each group. The groups were compared
using Wilcoxon Rank-sum tests (a.k.a. “Mann-Whitney tests), so that the comparisons
would be robust to the influence of outliers.

3. RESULTS
Table 1 displays the results of our comparisons. We found that those with AD had, on
average, higher quadratic components and lower linear components than the non-AD
controls, indicating exaggerated lateral movements of the vehicle (p<0.0001). They also had
lower estimates of γ1, indicating less vigilance in re-centering the vehicle, (p<0.0001). The
average estimates of γ0 were positive in both groups, indicating a tendency to be closer to
the right lane marker than to the left lane marker, which is generally a safe strategy when
there is oncoming traffic in the left lane and no obstacles in the shoulder, as was the case in
our simulated scenario. Based on the estimated values of γ0, the non-AD controls were
slightly more to the right than the AD subjects (p=0.045).

The model-based residual standard deviation, the entropy measures, and the descriptive
statistics based on the prediction errors from the entropy calculations all showed no
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significant differences between the two groups (p>0.05 in all cases). The standard deviation
of lane position and the lane crossing rate were both higher in the Alzheimer’s disease group
(p=0.0004 and 0.037, respectively), but the effect sizes of these differences was smaller than
three of the four significant parameter differences found by our model.

We found that the typical lateral mid-point was −0.26 meters for AD drivers and −0.28
meters for non-AD drivers, showing the tendency for both sets of drivers to be slightly right
of center, with the non-AD slightly more offset than the AD drivers. This finding is
consistent with the interpretation of γ0 given above. We also found that the typical 5/95
boundaries are −2.06/1.54 meters for the AD drivers and −1.56/1.01 meters for the non-AD
drivers. Hence, the AD drivers tend to be approximately 0.5 meters further away from the
center of the lane before they re-center with the same level of certainty (95%) as non-AD
drivers.

4. DISCUSSION
Our proposed model was able to distinguish between AD and non-AD subjects with respect
to lateral control. The parameters that differed between the groups lend themselves to
meaningful clinical interpretations. Specifically, since those with AD had higher quadratic
components and lower linear components, this suggested that AD drivers maintained less
control of the vehicle, in that their lateral movement trends were exaggerated and less less-
dampened compared to non-AD drivers. AD drivers were also less vigilant in moving the
vehicle back towards the center of the lane when the lane boundaries were approached or
crossed, indicating a greater potential of lane crossing. Finally, AD drivers were slightly
closer to oncoming traffic in the left lane, which could raise the risk of head-on collisions.

Our model does not explicitly represent human perceptual motor control processes, but
appears to be adequate approximation to observed lateral lane position. However, compared
to simple analyses, such as the standard deviation of lane position and the lane crossing rate,
the model does give separate components that can be interpreted so that driver behavior can
be better understood. The three general components of our model could be thought of as the
projection or filter component (captured by g(.)), the noise magnitude component (indexed
by σ2), and the correction component (pt). When comparing AD versus non-AD drivers, we
found no difference in the noise component, but notable differences in the projection
component (more exaggerated in AD) and in the correction component (less vigilance). The
differences in both the projection and correction components may reflect visuomotor
impairments in AD, and there may also be visuoperception impairments that relate to the
correction (re-centering) parameters.

The model-based residual standard deviation (our estimate of σ) is related conceptually to
the standard deviation of the prediction error distribution that is part of the entropy
calculation. In our model, we let the data determine, for each subject, the best-fitting linear
combination of the flat, linear, and quadratic projections to use for predicting each data
point. In the entropy calculation, the coefficients are set a priori to be β1=0, β2=1/3, and
β3=2/3 for every subject. Hence, it is not surprising that the standard deviations of the
residuals from our model were much smaller than those based on the entropy measure
(0.0046 vs. 0.0145 meters). No between-group differences were found when comparing the
entropy-based prediction error distributions in numerous ways (subject-specific entropy,
fixed-bin entropy, and the mean, standard deviation, skewness, and kurtosis of the prediction
errors).

The parameter estimates in our model can be greatly influenced by the sampling rate of the
time-series data. In our data example, we reduced our 30 Hz data frames down to 6 Hz data
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blocks of averages before fitting our model. We did this for two reasons. First, the resulting
167-msec block width is on the same order of magnitude as the minimum time of 150 msec
reported to be necessary for humans to make corrections when doing visuomotor tracking
(Jagacinski and Hah, 1988). Second, preliminary analysis revealed that with such a high
original sampling rate, and with finite precision in our measurement scale of lateral position
(1 cm), it was very common to have several points in a row with an identical value, followed
by a step up or down to the next possible value. With the raw data following this step
function, the projection based on three previous points was often exactly what was observed,
resulting in many “0” values for the residual errors in our model, as well as for the
prediction errors based on the entropy approach. Such discreteness was a direct violation of
our model, which assumed normal errors. However, when using averages over five frames,
the resulting data allowed a continuum of residual errors.

A number of methodological issues remain to be investigated. For example, even though our
model estimates gave interpretable results when comparing AD with non-AD drivers, we
have not yet formally investigated the statistical properties of our multi-stage method of
fitting our model. Thorough simulations are needed to examine the coverage performance of
confidence intervals and hypothesis tests (Type I and II error rates) based on the algorithm
we used to fit our model. Also, the performance of our model should be compared with the
performance of many other time-series models and approaches (e.g., see Kedem and
Fokianos, 2002; Donges, 1978). Finally, although we found our model parameters to give
better discrimination between the groups than Boer’s entropy, it is not clear whether this
would be the case when looking at high-workload versus low-workload situations, as
described by Boer (2004). There are also other versions of “entropy” that could be
considered as candidates (Richman and Moorman, 2000).

In this paper, we proposed a general model (Equations 1–3), as well as specific
reparameterizations (4–7), constraints (8–9), and a functional form of the re-centering
process (10). Other specific subclasses of the model could be proposed. In particular, it may
be that the two-parameter logistic model for re-centering (Equation 10) is overly restrictive,
and a more general functional form may be able to accommodate the possibility of drivers
recentering faster as they drift left versus when they drift right, due to the worse potential
consequences of the former (e.g., head-on collisions).

In our data example, some of the parameters of our model had greater effect sizes than the
rate of vehicle crossings. This suggests the possibility that the application of our model to
short time intervals may be able to predict lane crossings in future intervals. Our proposed
model has the potential to help assess driver safety, to provide inputs in vehicle safety
systems, and to provide the basis of outcome measures in interventional studies.

Acknowledgments
The authors would like to thank the entire research team of the Division of Neuroergonomics at the University of
Iowa. This work was supported by NIA awards AG17177 and AG15071.

Dawson et al. Page 8

Accid Anal Prev. Author manuscript; available in PMC 2011 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Appendix
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Figure 1.
Example of lane position data for a driver with Alzheimer’s disease.
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Figure 2.
Example of lane position data for an elderly driver without Alzheimer’s disease.
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Figure 3.
Hypothetical examples of projections based on three previous time points. From bottom to
top, the dashed lines show the flat, linear, and quadratic projections, corresponding to
coefficient sets of (β1=1, β2=0, β3=1), (β1=0, β2=1, β3=0), and (β1=0, β2=0, β3=1),
respectively. The dotted line shows a weighted average of linear and quadratic projections,
(β1=0, β2=1/3, β3=2/3).
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Table 1

Results of Between-Group Comparisons

Parameter Being Estimated, or Variability
Measure

Mean (SD), Median Wilcoxon Rank-Sum Statistics
(AD vs. Non-AD)AD Subjects (n=67) Non-AD Controls (n=128)

β1 (Flat Component) 0.052 (.020) .055 (.018) −1.03

β2 (Linear Component) 0.31 (0.24) 0.47 (0.25) −4.09***

β3 (Quad. Component) 0.64 (0.24) 0.48 (0.25) 4.19***

σ 0.0046 (0.0013) 0.0046 (0.0008) 0.25

γ0 (Default Position) 0.42 (0.54) 0.63 (0.79) −2.05*

γ1 (Re-centering) 1.63 (1.14) 2.29 (1.35) −3.78**

Subj.-Specific Entropy 0.59 (0.03) 0.60 (0.03) −1.78

Fixed-Bin Entropy 0.52 (0.16) 0.56 (0.08) −0.11

Mean Pred. Error (PE) 0.00033 (0.00063) 0.00033 (0.00056) −0.29

SD of PE 0.0150 (0.0068) 0.0145 (0.0056) −0.12

Skewness of PE 4.15 (7.85) 3.94 (6.12) −0.19

Kurtosis of PE 102.0 (109.7) 77.4 (85.7) 0.97

SD of Lane Position 0.29 (0.10) 0.25 (0.16) 3.53**

Lane Crossings per Minute 0.85 (1.71) 0.39 (0.96) 2.08*

*
p<0.05;

**
p<0.001;

***
p<0.0001
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