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Abstract

Recent advances in onboard vehicle data recording devices have created an abundance of 

naturalistic driving data. The amount of data exceeds the resources available for analysis; this 

situation forces researchers to focus on analyses of critical events and to use simple heuristics to 

identify those events. Critical event analysis eliminates the context that can be critical in 

understanding driver behavior and can reduce the generalizability of the analysis. This work 

introduced a method of naturalistic driving data analysis that would allow researchers to examine 

entire data sets by reducing the sets by more than 90%. The method utilized a symbolic data 

reduction algorithm, symbolic aggregate approximation (SAX), which reduced time series data to 

a string of letters. SAX can be applied to any continuous measurement, and SAX output can be 

reintegrated into a data set to preserve categorical information. This work explored the application 

of SAX to speed and acceleration data from a naturalistic driving data set and demonstrated SAX's 

integration with other methods that could begin to tame the complexity of naturalistic data.
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The recent developments in onboard vehicle data acquisition systems (DAS) and the 

increased interest in naturalistic driving studies have created an environment where the 

amount of data collected outpaces the available resources to analyze it. Naturalistic studies 

have generated terabytes if not petabytes of data, which have overwhelmed traditional 

approaches to data analysis that were developed for epidemiological analysis of crash data 

or analysis of simulator or on-road experiments. This limitation led researchers to focus their 

analyses on critical events and small time intervals surrounding them (1–3). These critical 

events were generally identified by applying simple heuristics to measures such as steering 

wheel velocity or lateral and longitudinal acceleration (4). Some recording systems also 

allow critical events to be defined by optical sensors or the drivers themselves (5). In all of 

these situations, the time intervals included in the analysis seldom extended beyond 30 s 

surrounding the event.

The critical event approach allowed researchers to identify the immediate causes of critical 

events that occurred during the surrounding time interval, but the approach limited 

researchers' ability to understand long-term driving behavior. Analyzing complete data sets 

may provide key insights into naturalistic data, such as why a small proportion of drivers 

cause a large proportion of crashes and near crashes (6). Such analyses would also allow 

researchers to better understand driver behavior in the context of environmental factors, such 

as weather and traffic, to improve the validity and generalizability of critical event analyses 

(4).

Analyzing complete data sets requires time series data reduction techniques that can reduce 

data size and facilitate comparisons between drivers, drives, and driving events. The 

interpretability and ease of output manipulation will also affect the adoption of data 

reduction techniques among the naturalistic driving research community and thus are 

desirable. Many common data reduction techniques, including sliding window reduction, 

Fast Fourier Transforms, and wavelet transforms, fail to meet all of these requirements. The 

shortcomings of these methods with respect to naturalistic driving have pushed researchers 

to explore innovative techniques. One of these techniques, chunking, has shown promise, 

but does not provide a complete solution (7).

This paper introduces a data reduction technique, symbolic aggregate approximation (SAX), 

which satisfies all of the aforementioned requirements and demonstrates the application of 

SAX to naturalistic driving data. SAX converts time series data into strings of symbols that 

represent ranges of values in the measurement. This conversion expedites critical event 

detection, facilitates new visualizations of drives, and enables comparisons between 

complete driver data sets and drives.

SAX Time Series Analysis

Reducing hundreds of megabytes of data into a more concise record represents an important 

challenge for research that uses naturalistic data. A technique for dimensionality reduction, 

SAX operates by binning segments of data into quantiles labeled with a letter (8). SAX has 

been successfully applied in several domains, including healthcare (9), weather prediction 

(10), and finance (11). The technique has not been applied to driving data.
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SAX can be applied to any continuous measure in the data, such as speed, acceleration, lane 

position, and heading. A major advantage of SAX is that it reduces dimensionality while 

maintaining the original structure of the data. Another advantage of SAX is that the 

symbolic conversion enables the application of natural language algorithms for pattern 

matching, word comparison, segmentation, and other textual analyses. These algorithms can 

be used to identify instances of interest in the data set, such as drowsiness-related lane 

departures.

With SAX, time series data from a single variable are evaluated over a time window defined 

in seconds. Inside each window, the raw data are normed by the local mean and standard 

deviation derived from the data in the window or from a global mean and standard deviation 

derived from a representative sample of the entire data set. Next, the data are divided into 

equal-size groups called epochs. The quantiles of the normal distribution are used to bin the 

mean of the data inside each epoch and the bins are used to convert values to letters. Each 

quantile corresponds to a specific letter, as shown in Figure 1 along the y-axis. After the data 

have been reduced to letters, the letters are combined into a word, with each window 

generating one word. The size of the window, the percentage of overlap between windows, 

word length, and alphabet size are all adjustable parameters. Figure 1 demonstrates SAX 

applied to a single window with a word length of six and an alphabet of five letters. The 

final result of the conversion is the word “Deedbb.”

The window size can range from the maximum resolution of the data to the duration of the 

entire data set. The amount of overlap between windows can vary between 0% and 100%. 

Word length must be between one and the total number of samples per window (sampling 

rate * window size). The amount of data in each epoch depends on the sampling rate and 

window size. The alphabet size defines the resolution of the binning. Generally an alphabet 

of five to eight letters is sufficient (8). Increasing the alphabet size increases the precision of 

the resulting data set but results in fewer similarly labeled epochs.

Application of SAX to Naturalistic Driving Data

This section describes the application of the SAX reduction method to speed and 

acceleration from a naturalistic driving data set that was collected to assess the efficacy of a 

sleep apnea treatment. All analyses reported here were completed with R 2.15.1 (12).

Naturalistic Driving Data

The data described in the following analysis originated from an ongoing National Institutes 

of Health study focused on evaluating the effects of positive airway pressure (PAP) therapy 

used to treat sleep apnea. Sixty-five participants started a data collection process that was to 

continue for 3.5 months. The 65 participants represented two groups: participants diagnosed 

with obstructive sleep apnea (OSA) and healthy control participants. The OSA-afflicted 

patients represented 45 of the 65 drivers, including 31 males with a mean age of 47 (SD = 

7.36). The following criteria were used to match individual control participants to a 

participant with OSA: gender, age (within 5 years), education (within 2 years), and county 

of residence. The control participants represented 20 of the 65 total participants, including 
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10 males with a mean age of 45 (SD = 8.53). Drivers were compensated for their time and 

effort pending the completion of the data collection and surveys.

Participants had their personal vehicles equipped with an in-vehicle data acquisition system 

(IV-DAS) that recorded Global Positioning System (GPS) information, onboard diagnostics 

(OBD) speed, three-axis accelerometer, and accelerator input at 10 Hz. The IV-DAS also 

collected intermittent video of the driver's face and the road. Video was recorded during the 

first minute after ignition, for a 20-s interval every 15 min during a drive, and a 20-s interval 

when the lateral or longitudinal acceleration measures exceeded 0.35 g. Data were collected 

for a period of 2 weeks before OSA participants receiving PAP therapy and for 3 months 

following the start of PAP therapy. Data for control participants were recorded for 3.5 

months without interruption. The data were partitioned into individual drives defined by 

ignition engagement and disengagement.

The analysis reported here focused on OBD speed and accelerometer data from only the 45 

participants afflicted with OSA. Three subjects were removed from the analysis because of 

incomplete data (two participants) or unreliable data (one participant). Speed and 

acceleration data were selected because they are common across many naturalistic driving 

studies, generally seen as diagnostic of driving behavior, and the most robust data sources in 

the current data set. Acceleration data contained some measurement uncertainty because the 

accelerometer could rotate slightly and cause purely lateral movements to be interpreted as a 

combination of lateral and longitudinal measures. For the effects of this uncertainty to be 

understood, acceleration was analyzed in two ways: first, based on lateral acceleration 

measures and second, based on a vector sum of lateral and longitudinal acceleration. The 

combined acceleration captured all peak accelerations regardless of direction (i.e., a hard 

stop or an abrupt swerve). Lateral acceleration alone will only be sensitive to abrupt swerves 

and turns and may miss some of these events if the accelerometer is poorly positioned. The 

combined measurement was used for all analyses except for the critical event detection.

Applying SAX

The primary goal of this work was to assess the applicability of SAX to naturalistic driving 

data. The parameters were selected through a combination of educated intuition and 

heuristics provided by Lin et al. (8). This selection process led to the following global input 

parameters: window size, 1 s; window overlap, 0%; and word length, one letter.

SAX was applied separately to speed and acceleration (lateral and combined) data. In both 

cases, the data were normed by a global estimate (based on 50,000 random samples) of the 

mean and standard deviation, with zero values removed. The zero values occurred at a 

significantly higher rate than other values and were removed to avoid skewing the mean and 

standard deviation measurements. The alphabet size varied between speed (nine letters) and 

acceleration (four letters). These alphabet sizes were selected with the goal of highlighting 

differences between common speed limits (i.e., 10 mph, 25 mph, 45 mph, and 65 mph) and 

unusually high accelerations (>0.4 g). The speed alphabet size was odd because an 

additional letter was incorporated for periods when the vehicle was stopped for the entire 

window. The letters and bin definitions for speed and combined acceleration are shown on 

top of the histograms of the sample data in Figure 2.
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The resultant SAX output can be combined with categorical and other non-SAX variables 

from the original data to form a new data structure with a letter for speed, combined 

acceleration, and lateral acceleration characterizing each second of data. An example of the 

SAX-reduced data set is shown in Table 1. The speed and acceleration letter columns have 

been augmented with real-world measures to demonstrate the connection to the original 

data.

The data can be further reduced by combining consecutive rows with the same speed and 

acceleration letters and assigning an additional column that records the duration of each 

state. For example, if a driver was stopped at a traffic signal for 10 s, the event could be 

represented with a single row of duration 10, with speed letter “i,” and acceleration letter 

“d.” The sample data from Table 1 represent all the measures collected by DAS in this 

experiment. SAX is not specific to this data set and could be applied to any data set, 

independent of the sampling rate and measures taken. Integrating categorical variables or 

continuous variables with SAX reduction is simply a matter of bookkeeping. Categorical 

variables, such as vehicle type, that do not change over a window can be simply appended to 

the data set. Categorical variables and continuous variables that may change in a single 

window, such as road type or GPS location, can be combined based on a majority vote or the 

median value over the window, respectively.

Results

The initial data set used in this analysis contained 15,953 drive files from 42 drivers, 

corresponding to 22.2 GB of file storage space. The SAX output was contained in a single 

file corresponding to 1.65 GB, a 92.6% reduction. This level of reduction makes it feasible 

to conduct global analyses of driver behavior while preserving the potential for critical event 

analyses. The following section provides details on a subset of new analyses made possible 

with SAX, in addition to applying SAX to critical event analysis.

Identifcation of Critical Events

The symbols that code speed and acceleration (or any SAX-reduced variable) provide an 

index of the original data. Therefore, critical event analyses that use bounds, such as 

acceleration greater than 0.4 g, can be extracted from SAX-reduced data by simply 

analyzing all data containing the letter that matches the bound, acceleration a in this case. 

Beyond this single-letter case, SAX data can be mined for patterns of any length. For 

example, all patterns with large changes in speed over short periods of time, which would 

correspond to the string ai, can be extracted. These longer phrases may be used to expand 

the definition of a critical event.

To explore critical event pattern detection, this study used lateral acceleration and speed, 

specifically peak lateral accelerations (greater than 0.4 g, acceleration letter a) occurring at 

high speeds (greater than 79 km/h, speed letter a). These bounds were selected because they 

suggest a potentially dangerous combination of speed and lateral acceleration, such as 

swerving after a microsleep episode. The analysis identified 501 events in the data set, with 

a mean of 11.93 events per participant. However, a small proportion of the participants (six) 
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accounted for nearly 54% (269) of the events. Eleven (26%) of the participants had one or 

no event.

Alone these events do not imply an accident or near accident; however, when the events are 

combined with other adverse conditions, such as driving during a circadian trough, they may 

be indicative of drowsy driving or some other impairment. Figure 3 shows the frequency of 

these events by hour for each participant, normalized by the number of drives by each 

participant. One participant, OSA016 (outlined in Figure 3), had a high density of these 

events in the very early morning. This process quickly identifies segments of interest for 

video analysis and can identify more complex critical events that extend over time rather 

than simply events based on variables exceeding a threshold.

SAX Visualizations

Naturalistic driving studies typically examine data at two levels: micro level analysis of real-

time videos and kinematic data streams and macro level statistics about driver performance 

throughout a study (1, 6, 13). Data between these two poles are difficult to visualize and, by 

extension, gaining an understanding of the data at the drive level with anything other than 

aggregate summary measures is challenging. The SAX data reduction technique addresses 

this challenge with a novel visualization of drives that uses a two-dimensional density plot. 

Figure 4 shows density plots for two drives. Each box represents a SAX letter labeled with 

its minimum value in original units and the hue of each square encodes the proportion of the 

drive spent at each level. The top plot shows a residential drive during which most of the 

time is spent stopped or driving 56 km/h (∼35 mph) or slower. The bottom plot shows a 

highway drive during which most of the time is spent at low acceleration and speeds over 79 

km/h (∼50 mph). These plots allow analysts to quickly understand the general contents of a 

drive in a way that aggregate summary measures cannot. In addition, the plots may alert 

analysts to adverse events during a drive: for example, if the box corresponding to speeds 

over 79 km/h and accelerations greater than 0.4 g was dark, the plot would suggest that a 

drive contained several hard stops or swerves.

Clustering and Comparing Data Across Drivers

These density plots can be used to identify similar individual drives. For example, Keogh et 

al. used density plots of genomic data to visually pair similar organisms (14). In the case 

studied here, the drives were analogous to the organisms and the groups represented 

different types of drives, for example a highway drive or a residential drive. Grouping these 

types of drives allows analysts to remove the variance in driver behavior associated with 

drive type from future analyses. This grouping process can be formalized and automated 

through the use of clustering, such as hierarchical clustering (15).

To cluster the drives based on the SAX description, each drive was defined by the time spent 

at each speed and combined acceleration letter, normed by the duration of the drive. The 

process resulted in the identification of six clusters (drive types). Figure 5 and Figure 6 each 

show a sample density plot from the drives contained in each cluster for two participants. 

Both figures show a clear separation between highway (Cluster 4) and short drives (Cluster 

6) with long stops. Clusters 1, 2, 3, and 5 have more subtle differences and represent 
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different forms of local drives. Clusters 1 and 2 have higher density toward the lower end of 

the speed scale and likely represent shorter drives than Clusters 3 and 5. Cluster 2 includes 

much higher density at higher acceleration and speed compared with Cluster 1, which 

suggests that the drives in the cluster occur in an environment with frequent and 

unpredictable stops, such as a city. Clusters 3 and 5 both include a highway component with 

some proportion of the drive occurring at speeds greater than 79 km/h; however, similar to 

Cluster 1, Cluster 3 has substantially higher density at low speed values compared with 

Cluster 5.

Most important, the clusters are similar across both drivers. These similarities make it 

possible to extract clusters common to all drivers and analyze them together. Essentially the 

clusters can be used to add to the data an additional categorical variable that codes the type 

of drive. To expand this cluster analysis, other drive information can be used, such as the 

presence of a median or the duration of the entire drive, to get a more specific definition of 

drive type. These drive types define the critical contextual information needed for sensible 

aggregation of naturalistic data.

Segmentation

The most important insight of this analysis was a shift from understanding naturalistic 

driving data as a series of events and summary metrics to a hierarchy of behavioral 

elements. The highest level of the hierarchy consists of the general behavior of the subjects 

within a study. This behavior can be decomposed into drives or trips characterized by drive 

type. The drives themselves are composed of segments and the segments are comprised of 

events. The concept of a driving segment seems obvious on a qualitative level. For example, 

a highway drive can be separated intuitively into the following segments: exiting a 

driveway, driving through a residential area, negotiating an entrance ramp, and driving on a 

highway. Defining these segments mathematically is significantly more difficult. Many of 

methods and algorithms that can be used for segmentation come from natural language 

processing research and require some form of text as input (16). This requirement aligns 

with the symbolic output of SAX.

One such segmentation algorithm is voting experts (VOX). Developed by Cohen et al., 

VOX is an automated process for segmenting continuous strings of symbols into words (17). 

The method operates on the theory that entropy within a word is much lower than entropy 

between words in any corpus. For example, given the phrase “thecar,” VOX will output two 

segments, “the” and “car” because these two words are much more common in the English 

language than any other segmentation, that is, “th” “ecar” or “thec” “ar.” This concept can 

be directly applied to SAX output to form drive segments.

Figure 7 shows an example of VOX output applied to SAX-reduced data for a portion of a 

drive. Specifically, the segment contains data from a drive to the grocery store. In the 

portion shown in the figure, a driver takes a left turn onto a segment of rural highway, 

accelerates to speed, maintains a steady speed, slows near the exit for the store, and finally 

turns into the store's parking lot. The top plot in the figure shows each segment plotted by 

latitude and longitude, the middle plot shows speed and acceleration changes during and 

between each segment, and the bottom table shows the SAX output for each segment paired 
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with a qualitative description. This type of segmentation does not simply divide the drive by 

changes in speed and acceleration; it identifies natural boundaries between segments relative 

to the whole data set.

The output of SAX and VOX (SAX-VOX) is a set of words corresponding to a segment of 

speed and acceleration data. Figure 7 shows that these driving words correspond to segments 

of interest. Thus, it may be possible to search and classify the data by driving words, similar 

to a dictionary with language. The difficulty with this metaphor is that small changes in 

driving words may result in different classifications of qualitatively similar events. For 

example, a highway driving segment lasting 10 min will be defined by a different word than 

one that lasts 10 min and 5 s. In a sense, these words will be synonyms, but it might be 

advantageous to classify them as the same word.

Conclusion

The data reduction and preliminary analysis presented here suggested a considerable shift in 

naturalistic driving data analysis. SAX time series reduction provides an efficient and 

comprehensive method to transform peta-size data into manageable structures without 

significant loss of information or descriptive power. Data mining tools and visualizations 

were used to create a new data structure that facilitated a hierarchical description of driving 

as well as classification and comparisons between drivers and individual drives. The input 

parameters are flexible and can be tailored to individual applications and while the 

application here focused on speed and acceleration, the approach could be extended to 

include any measure recorded over time.

In a broader sense, the SAX-VOX approach translates driving data from a series of numbers 

to symbols that can be segmented into words, phrases, and even paragraphs, which create a 

language of driving. Although far from defining this language, the current work has 

demonstrated that SAX time series analysis significantly supports, enhances, and extends 

current analysis. Perhaps most important, the level of data reduction achieved by SAX will 

allow analysts and researchers to share data efficiently and go beyond the event-based focus 

of most naturalistic data analysis.
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Figure 1. SAX reduction for single window of data with no overlap, letter size of five, and word 
length of six
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Figure 2. Histograms of sample data and letter assignments for (a) speed and (b) acceleration 
(kph = kilometers per hour)
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Figure 3. Histograms of peak lateral acceleration in high-speed events
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Figure 4. Two-dimensional density plot of speed and combined acceleration values for two full 
drives: (a) residential drive and (b) highway drive (VS = vector sum, the square root of the sum 
of squared lateral and longitudinal acceleration)
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Figure 5. Two-dimensional density plots for each drive type (cluster) for Participant 1: (a) 
Cluster 1, (b) Cluster 2, (c) Cluster 3, (d) Cluster 4, (e) Cluster 5, and (f) Cluster 6
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Figure 6. Two-dimensional density plots for each drive type (cluster) for Participant 10: (a) 
Cluster 1, (b) Cluster 2, (c) Cluster 3, (d) Cluster 4, (e) Cluster 5, and (f) Cluster 6
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Figure 7. 
Visualizations and descriptions of VOX output for subset of data from single drive: (a) 

segments by GPS location and (b) segments by speed and acceleration.

(c) word output with paired real-world actions (segment numbers are maintained throughout 

three representations as reference points).
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