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One challenge in using naturalistic driving data is producing a holistic analysis of these
highly variable datasets. Typical analyses focus on isolated events, such as large g-force
accelerations indicating a possible near-crash. Examining isolated events is ill-suited for
identifying patterns in continuous activities such as maintaining vehicle control. We pre-
sent an alternative approach that converts driving data into a text representation and uses
topic modeling to identify patterns across the dataset. This approach enables the discovery
of non-linear patterns, reduces the dimensionality of the data, and captures subtle varia-
tions in driver behavior. In this study topic models were used to concisely described pat-
terns in trips from drivers with and without untreated obstructive sleep apnea (OSA).
The analysis included 5000 trips (50 trips from 100 drivers; 66 drivers with OSA; 34 com-
parison drivers). Trips were treated as documents, and speed and acceleration data from
the trips were converted to ‘‘driving words.” The identified patterns, called topics, were
determined based on regularities in the co-occurrence of the driving words within the
trips. This representation was used in random forest models to predict the driver condition
(i.e., OSA or comparison) for each trip. Models with 10, 15 and 20 topics had better accu-
racy in predicting the driver condition, with a maximum AUC of 0.73 for a model with 20
topics. Trips from drivers with OSA were more likely to be defined by topics for smaller lat-
eral accelerations at low speeds. The results demonstrate topic modeling as a useful tool for
extracting meaningful information from naturalistic driving datasets.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Crash statistics and self-reported data show that drivers with untreated obstructive sleep apnea (OSA) are at an increased
risk of involvement in a motor vehicle crash (Tregear, Reston, Schoelles, & Phillips, 2009; Williamson et al., 2011). These data
sources provide details on the safety risk of OSA in naturalistic settings, however, they do not capture the subtle changes in
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driver behavior that may be responsible for the increased crash risk. As a result, assumptions must be made about the con-
nection between the OSA condition and crash risk. The prevailing understanding is that the increased crash risk is due to
increased driver drowsiness (Tippin, Aksan, Dawson, & Rizzo, 2013; Williamson et al., 2011). The chronic narrowing or clo-
sure of the upper airway and associated disordered breathing causes recurrent partial awakenings during the sleep of OSA
patients (American Academy of Sleep Medicine (AASM), 2014). As a result, drivers with OSA are prone to higher incidences of
daytime drowsiness.

1.1. Drowsiness effects in controlled environments

Drowsiness has been shown to undermine driver performance in controlled settings, such as a driving simulator
(Contardi, Pizza, Sancisi, Mondini, & Cirignotta, 2004; Thiffault & Bergeron, 2003; Turkington, Sircar, Allgar, & Elliott,
2001; Yuan, Du, Qu, Zhao, & Zhang, 2016). Drowsy drivers have delayed sensory processing ability and perception, need
longer periods to react to external stimuli, and have substantially degraded ability to control their vehicle (Eskandarian,
Mortazavi, & Sayed, 2012). In understanding the effects of drowsiness on vehicle control, steering wheel movements have
emerged as one of the more sensitive measures of the effect of drowsiness on driving behavior (Krajewski & Sommer,
2009; McDonald, Lee, Schwarz, & Brown, 2018; McDonald, Lee, Schwarz, & Brown, 2013). The effects of drowsiness on steer-
ing behavior include: ‘‘fewer small, smooth steering adjustments (micro-corrections), more zigzag and slow oscillation,
greater steering entropy (measure of steering variability), larger erratic steering movements (indicating e.g. overcorrecting
for unanticipated road changes), lateral drift outside the driver’s comfort zone, and more large and fast steering corrections”
(Krajewski & Sommer, 2009). These steering behaviors are further reflected in the lateral movement of the vehicle, resulting
in the common use of lateral movement measures in drowsiness detection simulator studies (Forsman, Vila, Short, Mott, &
Van Dongen, 2013).

1.2. Drowsiness effects in naturalistic environments

Although they lack the precise control of simulator studies, naturalistic driving studies can reveal a link between driver
behavior and safety outcomes. In naturalistic driving studies, video and data recorders in participants’ vehicles unobtrusively
record behavior and environments during normal driving (Bärgman, Lisovskaja, Victor, Flannagan, & Dozza, 2015; Klauer,
Dingus, Neale, Sudweeks, & Ramsey, 2006). These studies generate large amounts of heterogeneous data, which make it dif-
ficult to identify comparable scenarios and extract a holistic understanding of driver behavior. A typical approach to address
this challenge is to identify and compare the relative frequency of data segments which have similar kinematic or physio-
logical signatures, for example extracting the five to ten seconds of data surrounding a large vehicle acceleration value or the
prolonged closure of a participant’s eyes (Barr, Yang, Hanowski, & Olson, 2005; Dozza, Bärgman, & Lee, 2013; Guo & Hankey,
2009; Hanowski, Wierwille, & Dingus, 2003; Rau, 2005; Wu & Jovanis, 2013). This approach has been particularly useful in
yielding insights regarding common activities that precede crashes and near-crashes (Carney, Harland, & McGehee, 2016;
Dingus et al., 2016). Using this approach, naturalistic driving studies investigating the effects of drowsiness on driving found
drowsy drivers have a higher crash risk and tend to develop ‘‘tunnel vision”, where they neglect to scan areas outside of the
forward roadway (Barr et al., 2005; Klauer et al., 2006). A naturalistic study investigating the effects of sleep fragmentation
(the amount and duration of awakenings after sleep onset) on driving found that for days following high levels of fragmented
sleep, drivers with untreated OSA displayed more severe physical symptoms of drowsiness while driving, even while nav-
igating intersections, and made more safety errors during drowsy episodes as compared to drivers without OSA (Aksan,
Dawson, Tippin, Lee, & Rizzo, 2015). Another study using the same dataset found that short periods (3–30 s) of speed and
acceleration data captured driving patterns that distinguished drivers with different levels of OSA treatment adherence
(McDonald et al., 2017).

1.3. Limitation of typical naturalistic driving data analysis approach

The results from prior work suggest that drowsiness affects driving performance in both simulated and naturalistic envi-
ronments. However, in contrast to the simulator studies, the naturalistic studies have tended to treat drowsiness as a tran-
sient event by focusing on identifying isolated periods where drivers exhibited symptoms of drowsiness. In the case of
drivers with untreated OSA, drowsiness is often a chronic condition (American Academy of Sleep Medicine (AASM),
2014). As a result, these drivers may continuously exhibit driving behavior that differs from the behavior of drivers without
the condition. To determine the presence of more pervasive, and perhaps more subtle differences in driving behavior
requires a different approach than the critical event method typically used to analyze naturalistic driving data. The objective
of this study is to explore the use of an alternative approach for analyzing naturalistic driving data to identify trip-level pat-
terns in the behavior of drivers with OSA. The approach used for the analyses described in this paper differs from the critical
events method in that it describes all the data from a driver’s trip instead of isolated periods of the trip. The approach also
enables the discovery of unknown driving patterns by not requiring the analyses to have pre-determined the features that
will be extracted from the raw data (e.g., pre-determine to extract all instances where g-force exceeded a threshold).

While a variety of data are collected during naturalistic driving studies, the analyses in this paper focus on the use of vehi-
cle kinematics data. The vehicle kinematics data collected during naturalistic driving studies provide a measure of driver
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behavior in terms of vehicle control (Fuller, 2005; Reymond, Kemeny, Droulez, & Berthoz, 2001). Because these data are often
collected continuously, they offer an opportunity to analyzed normal driving behavior over an extended period. The data
provide information on what driving activities occurred, when they occurred, and where they occurred. With a driver sample
that travels in similar roadway environments at similar times (e.g., a sample of rural drivers with regular work schedules),
the information on driving activity timing and location can be removed and the analysis of driver behavior can focus on what
activities occurred in terms of how the vehicle was handled. In removing the time and spatial order of the data, the data are
effectively converted from continuous spatiotemporal series to variables with discrete values. These variables can then be
compared to identify patterns of interest.

1.4. Changing from critical events to topics

To discover long-range patterns in large volumes of highly variable driving data, the data needs to be transformed in a
way that reduces the volume and provides structure, without subsetting the dataset (Wang et al., 2013). One common
approach for such a data transformation is to summarize the distribution of the data using measures of central tendency.
This approach provides simple metrics for comparison; however, it masks the subtle variability that likely constitutes the
patterns of interest. An alternative approach is to use linear or non-linear dimensional reduction methods to represent
the data using fewer parameters (Van Der Maaten, Postma, & Van Den Herik, 2009). Many of the driving patterns identified
in controlled settings that were associated with drowsiness represent non-linear changes in vehicle control (Krajewski &
Sommer, 2009). As a result, non-linear dimensional reduction methods may be well suited to represent the driving data
in a way that preserves the patterns of interest.

The interpretability of the identified patterns is a key factor in using the results of a naturalistic driving data analysis to
better understand driver behavior. While a number of non-linear dimensional reduction methods exist, the topic modeling
method stands out because it is intended to produce interpretable results (Blei, 2012). Topic modeling is an unsupervised
dimensional reduction method designed to identify word co-occurrence patterns, called latent topics (Steyvers & Griffiths,
2007). In text applications, topics provide a meaningful overall description of a corpus of documents as well as a description
of the individual documents. For example, topic modeling has been applied to the thousands of papers published in the jour-
nal Science to describe the papers according to their topic areas and to identify the domains of investigation that have defined
science over the last 100 years (Blei & Lafferty, 2007). Fruitful topic modeling applications beyond text analyses include pop-
ulation genetics, computer vision, and human activity recognition (Blei, 2012; Farrahi & Gatica-Perez, 2011; Huynh, Fritz, &
Schiele, 2008).

Topic models require a text representation of data, so continuous driving data need to be transformed to a discrete ‘‘tex-
tual” representation. The bag-of-words text representation is particularly advantageous because it preserves much of the
local variation in the data while also regularly outperforming other representations when used in subsequent analyses such
as classification or clustering (Baydogan, Runger, & Tuv, 2013; Lin, Keogh, Wei, & Lonardi, 2007; Lin & Li, 2009). Driving data
are represented as a bag-of-words by segmenting the data and encoding the segments as symbols or ‘‘words”. The applica-
tion of topic modeling to driving data requires a shift in perspective from documents and words to trips and driving-related
variables encoded as driving words. In this context, topic models identify driving topics representing common trip elements
analogous to how the models identified themes across a set of articles from Science (Blei & Lafferty, 2007). Common ele-
ments across trips could include, for example, the vehicle kinematics associated with driving on a highway or having to stop.
By using topic modeling, it is possible to shift from a focus on isolated data segments to describing entire trips without rely-
ing on measures of central tendency that mask the variability in behavior. Instead, the topic models describe trips as an
aggregate of units of behavior that occur at the level of seconds. Such a perspective can reveal previously unrecognized pat-
terns of behavior.

This paper describes the use of topic modeling to compare how drivers with and without OSA manage the control of their
vehicle. Two different analyses were conducted using speed, lateral acceleration, and longitudinal acceleration data from a
naturalistic study of drivers with OSA and comparison drivers (Aksan et al., 2015). The first analysis examined how the num-
ber of topics included in the topic models affects what patterns are identified in the trips. The second analysis used the topics
in a random forest prediction model to assess to what degree the topics distinguish drivers with OSA from comparison dri-
vers. Together, these analyses show the utility of moving beyond considering only critical events when using naturalistic
data to understand driver behavior.

2. Methods

2.1. Data description

The study involved naturalistic observations of OSA patients driving their own vehicles equipped with an in-vehicle data
acquisition system (IV-DAS) for a two-week period before and three-months after beginning CPAP (Continuous Positive Air-
way Pressure)-therapy. Comparison drivers were observed for the same three and one-half month duration as the OSA dri-
vers. OSA drivers met ICSD-2 clinical criteria for OSA and had a Respiratory Distress Index (RDI) > 15, while comparison
drivers had no sleep complaints and an RDI < 5 as confirmed by an overnight sleep study (American Academy of Sleep
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Medicine (AASM), 2014). They were matched with OSA drivers at the group level on age within five years, education within
two years, distribution of gender, and county of residence for balancing rural vs. urban driving.

The IV-DAS contained an internal camera cluster, GPS, OBD-II (for vehicle speed), and three-axis accelerometers. Video
data collection was triggered intermittently based on accelerometer exceedances and a baseline data collection schedule.
The GPS, OBD-II, and accelerometer data were continuously recorded at 10 Hz. These data were partitioned into individual
drive files defined by ignition start and stop (Aksan et al., 2015).

For this analysis, the driver sample included 100 drivers; 66 OSA drivers (22 female, age M = 47.4 years, SD = 7.6) and 34
comparison drivers (16 female, age M = 44.0 years, SD = 8.5). The ratio for comparison drivers to OSA drivers reflected the
distribution of participants in the broader study. The study was conducted in the United States; participants drove mostly
in Iowa and the surrounding states including Minnesota, Wisconsin, Illinois, Missouri, Nebraska, and South Dakota. Data
from the two-week period before CPAP-therapy were used from the OSA drivers along with the first two-week period of data
collected from the comparison drivers. This pre-CPAP sample provided data corresponding to the time when performance
differences between OSA and comparison drivers would be the greatest, as CPAP therapy was expected to mitigate adverse
effects of OSA.

2.2. Processing of driving data

A minimum trip length threshold was used to reduce the inclusion of partial trips in the analysis. The threshold of 5 min-
utes was decided as it is a common minimum trip length reported by travelers (Bricka & Bhat, 2006). To prevent skewing the
analysis towards any one driver due to the varying numbers of trips from different drivers, only the first 50 trips from each
driver that met the trip length requirement were included in the analysis, resulting in a total of 5000 trips (trip length: M =
19.2 minutes, SD = 18.6 minutes, minimum = 5 minutes, maximum = 2.9 hours). The sample included the first trips after the
installation of the IV-DAS and as a result captured any driver adjustments to the system. Prior naturalistic studies using sim-
ilar, unobtrusive IV-DAS found that drivers quickly forget about the system and return to their normal driving behaviors
(Hanowski et al., 2003; Klauer et al., 2006). As a result, the effects of the system novelty on driver behavior were expected
to be small. Driving variables used for the present analysis included speed, lateral acceleration, and longitudinal acceleration.
These variables were selected because they are a direct output of vehicle control behaviors (Fuller, 2005; Reymond et al.,
2001). Table 1 describes the variables used in the analysis.

2.3. Data reduction and conversion

The large size of naturalistic driving datasets demands some type of data reduction. Symbolic Aggregate Approximation
(SAX) was used to reduce the data for the analyses presented in this paper. SAX was developed as a generic method for con-
verting time series data to a lower dimensional, less noisy format that retains the general shape of the original data (Lin et al.,
2007). While a number of methods exist for reducing the dimensionality of time series, such as Fourier and wavelet analysis,
SAX was preferred because the relative distance between values in the original data is preserved, it does not rely on assump-
tions of stationarity (i.e., that the mean, variance and autocorrelation structure do not change over time) and is robust to
outliers (Lin et al., 2007). These properties of SAX made it possible to compare trips based on the details of drivers’ behavior
rather than simple summary statistics (Lin et al., 2007; McDonald et al., 2013). SAX was used to reduce the dataset to ten
percent of its original size (i.e., from one point per 0.1 s to one point per 1 s) and convert the numeric speed and acceleration
data into the symbolic form required for fitting the topic models.

Fig. 1a shows the steps of applying SAX to a 10-second segment of speed data. The top plot shows the raw numeric data at
10 Hz. The middle plot shows the aggregation step that reduces the number of data points, in this case from 100 data points
to 10, and reduces the number of unique values by grouping them into bins, which are indicated on the y axis. The bottom
plot shows the step of converting the numeric values to alphabetic symbols, which in the figure are overlaid on the raw data.
The letter sequence, ‘‘abbbcccccc” is the final output of SAX for this segment of speed data. To enable multivariate analyses,
letter sequences from different data variables are combined to form word sequences. Fig. 1b shows letter sequences from
speed, lateral acceleration, and longitudinal acceleration data being combined to form words, each of which indicate the
approximate values of the three variables for one second of data. For the present analysis the combination was: (speed)_(lat-
eral acceleration)_(longitudinal acceleration). The order in which the letters are combined does not influence the topic model
results so long as it is consistent. The word sequences created from the driving data for each trip comprise the documents
that are analyzed using topic modeling as shown in Fig. 1c.
Table 1
Driving variables.

Variable name Units Precision

Speed Kilometers per hour (kph) 1 kph
Lateral acceleration Gravitational force (g) 0.001 g
Longitudinal acceleration Gravitational force (g) 0.001 g
Time Greenwich mean time zone (GMT) 1 s

Note. All variables recorded at 10 Hz.
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2.3.1. SAX data aggregation process
The speed data were aggregated into one second, non-overlapping segments. The collection rate was 10 Hz, so each seg-

ment consisted of ten points. The arithmetic mean was used for the aggregation. Next, the sequence of segment summary
values was checked for the presence of consecutive zero values. These zero speed periods were generated by non-driving
events, such as a participant sitting in their vehicle for a while before turning off the ignition or idling while waiting for a
traffic signal change. Any sections of consecutive zero speed summary values were reduced to a single zero value to retain
information on the occurrence of a stop while avoiding the generation of meaningless topics based on the inclusion of many
identical driving words associated with a single long period of zero speed.

Like the speed data, the acceleration data were aggregated into one second, non-overlapping segments. To avoid masking
high acceleration events, which would hide potentially safety-relevant information, the mean was not used to aggregate the
acceleration data. Additionally, in reviewing the acceleration values it was observed that using the maximum absolute values
would result in the inclusion of many large spurious values which were not indicative of the driver’s behavior. To avoid the
inclusion of these values a threshold slightly lower that the maximum acceleration was used for the segment summary. For
each segment the value at the 85-percentile (i.e., high positive accelerations) and the 15-percentile (i.e., high negative accel-
erations) was determined and the larger absolute value was selected as the segment summary. The sign of the selected value
was retained.

2.3.2. Bin thresholds
The values used for the bin thresholds are shown in Table 2. The speed bin thresholds approximate typical speed limits for

different road functional classes (National Highway Traffic Safety Administration (NHTSA), 2012). The acceleration bin
thresholds align with normal, comfortable accelerations for more subtle maneuvers such as coasting or gradually increasing
speed to more deliberate maneuvers such as making a turn or coming to a complete stop (Bosetti, Da Lio, & Saroldi, 2014;
Rice, 1973; Seppelt & Lee, 2007).
Table 2
Bins for SAX.

Latitude & longitude acceleration Speed

Symbol Range Symbol Range

a <(�0.30) g a =0 kph
b (�0.30) to (�0.20) g b <32 kph
c (�0.20) to (�0.06) g c 32–73 kph
d (�0.06) to (�0.03) g d 73–96 kph
e (�0.03) to (0.03) g e >96 kph
f 0.03–0.06 g
g 0.06–0.20 g
h 0.20–0.30 g
i >0.30 g
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2.3.3. Driving word meanings
The order of the letters in each driving word corresponds to: (speed)_(lateral acceleration)_(longitudinal acceleration).

Based on the possible combination of speed and acceleration letters, the words describe one of four vehicle states: during
the one second period described by the word, the word represents either (1) maintaining a constant speed and lateral accel-
eration, (2) having changes in the vehicle speed only, (3) having changes in the vehicle lateral acceleration only, or (4) having
changes in both vehicle speed and lateral acceleration. Words that are in the same vehicle state can have differences in the
magnitude of the speed and/or acceleration values. Table 3 shows the word structures that correspond to the different vehi-
cle states. Note the letter ‘‘e” corresponds to �0 g for both lateral and longitudinal acceleration. These driving words provide
a direct way to interpret the patterns identified using the topic modeling dimensional reduction method.

2.4. Identifying patterns using topic modeling

Topic modeling was originally developed to summarize the contents of large document sets. The method uses the fre-
quency of co-occurring words to identify document topics. The topics capture patterns in word usage across sub-groups
of documents. To apply topic modeling to naturalistic driving data, we use an analogy between the text documents and
the numeric data. A driving document consists of all the speed and acceleration data generated during one trip. Therefore,
each participant generated many driving documents. The words that comprise a driving document are the summary values
for the one second data segments. These values were converted from numbers to strings using SAX. The topics identified by
the model describe driver behaviors that tend to co-occur during a trip, as conveyed by vehicle state combinations. Given
this analogy, topic modeling was used to identify patterns in the data and develop concise descriptions of each trip.

The topic models were generated using the Latent Dirichlet Allocation (LDA) method (Blei, Ng, & Jordan, 2003). The LDA
algorithm is the simplest in the family of algorithms used to generate topic models. In an LDA topic model, the documents
are treated as ‘‘bags of words” where the order of the words is ignored. Topics are identified using groups of words that co-
occur frequently in the documents (Blei, 2012). These topics are formally specified as a probability distribution over the com-
bined vocabulary of words found in all of the documents, where larger probability values are assigned to the vocabulary
words that define the topic and near-zero probability values are assigned to the vocabulary words that are not part of the
given topic (Chang, Boyd-Graber, Gerrish, Wang, & Blei, 2009). In addition to identifying which words define the topics,
the topic model identifies which topics describe each document. An LDA topic model is a mixed-membership model, so that
each document can have multiple topics in different proportions (Blei et al., 2003). The model formally describes each doc-
ument using a probability distribution over the combined set of topics, where larger probability values are assigned to the
topics that describe the document and near-zero probability values are assigned to the topics that do not describe the doc-
ument. In this way the LDA topic model differs from other common unsupervised machine learning algorithms such as k-
means, which assigns each element in a dataset to only one group or cluster (Jain, 2010).

Five topic models were constructed using the R package topicmodels (Hornik & Grün, 2011). The models differed in the
number of topics; the five models included 2, 5, 10, 15, and 20 topics. As with other machine learning methods that are ini-
tialized with random seeds, different runs on the data produced different topic models. Solutions were considered stable
when similar sets of word distributions were identified as topics across different runs. To further improve solution stability,
the models were fit using ten-fold cross validation and the log-likelihoods were used to select the final models, which are
common approaches for fitting topic models (Hornik & Grün, 2011).

2.5. Comparing trip descriptions from different drivers using random forests

Random Forest models were then used to assess whether trips described by topics can differentiate between OSA drivers
and comparison drivers. Random Forest models consists of many decision trees trained on random bootstrapped samples of
training data, and randomly selected predictor subsets (Breiman, 2001). Classification is performed by a majority vote of the
predictions of the trees.

The random forest algorithm was selected because it is robust to noisy predictors and it does not rely on assumptions of
linearity (Breiman, 2001). Like beta weights with linear regression models, Random forests produce a measure of variable
importance. This measure is based upon the number of times a given predictor appears in the algorithm and its predictive
power in each appearance in the decision trees that make up the random forest. The variable importance compensates for
the loss of interpretability of a multi-tree algorithm by indicating which variables contribute the most to successful
classification.
Table 3
Vehicle states described by the driving words.

Vehicle state Word structure Examples

1. Constant speed and no lateral acceleration (any letter)_(e)_(e) a_e_e/b_e_e/c_e_e/d_e_e
2. Changed speed only (any letter)_(e)_(not ‘‘e”) d_e_f/d_e_g/d_e_h/d_e_i
3. Experience lateral acceleration only (any letter)_(not ‘‘e”)_(e) c_a_e/c_b_e/c_c_e/c_d_e
4. Changed speed and have lateral acceleration (any letter)_(not ‘‘e”)_(not ‘‘e”) e_d_f/e_c_g/e_b_h/e_a_i
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Ten-fold cross validation was used to assess the expected performance of the models. Due to the repeated measures for
each participant in the dataset (i.e., multiple trips for each participant), the data for each participant was grouped within the
folds to avoid introducing bias in the performance predictions that would have occurred if the trips from a given participant
were included in both the training and testing data.

Random Forest models were fit using R packages caret and randomForest (Kuhn, 2008; Liaw & Wiener, 2002) with the trip
descriptions from the five topic models as features to identify whether the driver on a particular trip was suffering from OSA.
If the trip descriptions based on topic models are good predictors, (i.e., the Random Forest models perform well) the topic
models would seem to capture important aspects of driver behavior related to the effects of OSA.

3. Results

3.1. Differences in topic models—topic definitions

Topic models with 2, 5, 10, 15, and 20 topics were constructed and compared. The model computation time increased
non-linearly with the number of topics, with the two-topic model taking approximately five minutes to run while the
twenty-topic model took approximately four days to run using a dual-core, 64-bit Windows PC with 16 GB of RAM. The topic
models specified the identified topics as a probability distribution over the combined vocabulary of words found in all the
documents (i.e., trips), where larger probability values were assigned to the vocabulary words that define the topic and near-
zero probability values were assigned to the vocabulary words that did not define the topic.

The two-topic model was the simplest model and identified the most outstanding characteristics in the trip compositions.
In this model, Topic 1 represented the proportion of a trip driven at low to medium speeds (i.e., < 73kph), both when the
driver had constant speed and no lateral acceleration as well as when they changed their speed and/or lateral acceleration
at medium to low speeds. Topic 2 represented the proportion of a trip driven at high speeds (i.e., 73–96 + kph), both when
the driver had constant speed and no lateral acceleration and when they changed their speed and/or lateral acceleration.
Fig. 2a shows the five highest probability words associated with each topic in the two-topic model. As shown in the figure,
the probability of the driving words differed within each topic. By comparison, a ‘‘null” topic would assign equal probability
to each of the words. The probability of the driving words also differed across topics, with words that had high probability in
one topic having little to no probability in the other topic. In Topic 1 the word with the highest probability is ‘‘c_e_e” from
vehicle state 1 (constant speed and no lateral acceleration), where the speed is between 32–73 kph, with �0 g lateral and
longitudinal acceleration. The other four words have a similar probability as the highest probability word, are all from vehi-
cle state 2 (changes in speed only), and have speed letters ‘‘b” or ‘‘c” indicating driving at low to mid speeds, similar to speeds
in urban environments. In contrast, of the five words for Topic 2, the probability is concentrated on two words that are both
from vehicle state 1 (constant speed and no lateral acceleration). The words ‘‘e_e_e” and ‘‘d_e_e” reflect driving at mid to
high speeds (73–96 kph) similar to speeds on highways, with �0 g lateral and longitudinal acceleration. The differences
in the topics are also reflected in the trips most associated with each topic as shown in Fig. 2b, which compares a trip highly
associated with Topic 1 (Topic 1 probability = 0.99) versus one highly associated with Topic 2 (Topic 2 probability = 0.99).

Increasing the number of topics in the models led to more specific topics. The topic definitions shifted from describing
general differences in speed (i.e., high speed vs. low speed) regardless of longitudinal and lateral acceleration, as in the
two-topic model, to more precisely describing speed ranges as well as describing differences in the lateral and longitudinal
accelerations. This change can be seen in the highest probability word for each topic in the different models. These words
correspond to one of four vehicle states as indicated in Table 3. In the two-topic model, the highest probability word for both
topics corresponded to the vehicle state when the vehicle speed is constant and there is no lateral acceleration. However, as
Fig. 2. Comparison of the key words and exemplar trips for each topic in the two-topic model.
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shown in Fig. 3, with an increase in the number of topics in the model there was an increase in the diversity of vehicle states
represented by the highest probability words.

Increasing the number of topics also led to increasing overlap in the topic definitions. Examining the highest probability
words for each topic illustrates this trend. All the highest probability words were unique in the two- and five-topic models.
However, the ten-topic model had only eight topics with unique highest probability words, the fifteen-topic model had only
twelve topics with unique highest probability words, and the twenty-topic model had only nine topics with unique highest
probability words. The increasing overlap in the topic key words suggests the models were identifying smaller variations in
the driving word composition of the trips. The diminishing return of adding more topics to improve the model fit can be
measured by perplexity, a measure of the accuracy of the predicted word distribution in a held-out sample, which decreases
with improved model fit (Blei & Lafferty, 2007; Chang et al., 2009). Fig. 4 shows perplexity declining with the increasing
number of topics; the improvement to model fit significantly diminished after the ten-topic model.

3.2. Differences in topic models—driver condition prediction

The topic models described each trip in the naturalistic driving data using a probability distribution over the combined
set of topics, where larger probability values were assigned to the topics that described the trip and near-zero probability
values were assigned to the topics that did not describe the trip. The set of topic probabilities for each trip were used as pre-
dictors in a series of Random Forest (RF) models to identify the condition of the drivers (i.e., comparison or OSA). The per-
formance of the RF models in distinguishing OSA drivers from comparison drivers was assessed using receiver operating
characteristic (ROC) curves and the associated area under the curve (AUC) values for each model, which serve as a summary
for the ROC curves (Bradley, 1997). As shown in Fig. 5, the RF model performance improved as the number of topics in the
topic model increased.

The RF model failed to differentiate the drivers based on trip descriptions from the two-topic model, which only distin-
guished the amount of driving at low to medium speeds and the amount of driving at high speeds (AUC: .51 � random clas-
sification). Using the predictors from the five-, ten-, fifteen-, and twenty-topic models, the RF models identified differences in
the driving data for the two groups. As the number of topics increased for the models, they became more specific about the
driving patterns they described. As the topic definitions became more specific, the performance of the RF models improved.
The rate of performance improvement for the RF models plateaus after the ten-topic model, with the AUC for the twenty-
Fig. 3. Ratio of vehicle states represented in each model by the highest probability word in each topic.

Fig. 4. Scree plot of perplexity for each topic model. Lower values of perplexity indicate better fit.



Fig. 5. ROC curves and AUC for the Random Forest models.
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topic model being nearly the same as for the ten-topic model (AUC for 10-topics: 0.69; 15-topics: 0.72; 20-topics: 0.73)
despite doubling the number of topics.

3.3. In-depth investigation of the ten-topic model

The five topic models were compared in terms of their descriptiveness, based on the topic key words, the fit of the models
in terms of perplexity, and the performance of the models in distinguishing drivers with OSA from comparison drivers. Of the
five models, the ten-, fifteen-, and twenty-topic models were the best performing in terms of AUC and perplexity. The fifteen-
and twenty-topic models were less interpretable than the ten-topic model due to the significant overlap in their topic key
words. Given the goal of identifying interpretable patterns, the model interpretability was a deciding factor in the model
selection. The ten-topic model provided a detailed description of the data that revealed differences in the data from drivers
with and without OSA while limiting the production of extraneous topics with overlapping definitions. Based on these
results the model was selected for further investigation.

3.3.1. Ten-topic model topic descriptions
The key words used to define each topic in the ten-topic model are listed in Table 4. To identify these key words, the

vocabulary words were ordered by decreasing probability and a cumulative probability distribution was calculated for each
topic. The words that accounted for a larger fraction of the total probability for a given topic were selected as the topic’s key
words. As shown in the table, some topics were defined by only a few words while others are defined by many words. Topics
with fewer key words were largely defined by words that indicated a constant speed with little to no lateral or longitudinal
acceleration (e.g., ‘‘d_e_e”, ‘‘e_e_e”—state 1 words). These words had higher overall prevalence in the data. Topics with more
key words were defined by words that indicated some level of lateral and/or longitudinal acceleration (e.g., ‘‘b_c_g”, ‘‘c_f_c”—
state 2, 3 and 4 words). These words had lower overall prevalence in the data.

Fig. 6 shows the overall prevalence in the data of the topics from the ten-topic model. The topic prevalence was calculated
by totaling the probability for each topic across all the trips. The topics varied in prevalence, with the mid and low speed
topics having higher prevalence than the high-speed topics. Fig. 6 also shows a numeric summary of the topics in terms
of the associated speed, lateral and longitudinal acceleration values. This summary was generated by relating the topic
key words back to the speed and acceleration combinations they represent. Table 5 shows an example of how the numeric
summary was determined for Topic 3. First, each letter in the topic key words was replaced by the mean value of the data
represented by the letter (see Table 2 for the speed and acceleration ranges represented by each letter). Next, a weighted
average of these replacement values was calculated for each data variable. The weight used for the replacement values
was the key word probability divided by the total probability of all the topic key words. Using the numeric summary, the
topics could be grouped by speed, with Topics 3, 5, 6, 8, and 10 referring to driving at high speeds, Topics 1, 2, and 9 referring
to driving at mid speeds, and Topics 4 and 7 referring to driving at low speeds.

3.3.2. Random forest results for the ten-topic model
The variable importance measure for the ten-topic model was investigated to understand the differences in trip descrip-

tions identified by the RF models between the two driver conditions. The measure, Gini importance, is a univariate variable
selection measure that scores the variables used in the RF models independently on their importance in differentiating the
data (Archer & Kimes, 2008). The topics in order of their importance are shown in Fig. 7 along with the prevalence of each
topic and the numeric summary of the topics.

As shown in Fig. 7, five of the topics had particularly high importance in the Random Forest model. These topics had
higher prevalence in the data and had key words referring to mid speeds (Topics 1, 2, and 9) and low speeds (Topics 4



Table 4
Topic descriptions for the ten-topic model.

Topic Keywordsa,b Topic definition

Topic 1 c_e_f/c_e_g/c_e_c/b_e_g/c_e_d/b_e_c � Speed: mid (32–73 kph), �suburban speed limits
� Lateral acceleration: minimal (<±0.03 g)
� Longitudinal acceleration: large (±0.03 g to ±0.2 g)

Topic 2 c_f_e/c_d_e/c_c_e/c_g_e/c_e_e/c_d_f/c_f_f/c_g_f/
c_c_f/c_c_d/c_f_d

� Speed: mid (32–73 kph), �suburban speed limits
� Lateral acceleration: large (±0.03 g to ±0.2 g)
� Longitudinal acceleration: moderate (>±0.03 g to ±0.06 g)

Topic 3 d_e_e/d_e_f/d_e_d � Speed: high (73–96 kph), �highway/arterial speed limits
� Lateral acceleration: minimal (<±0.03 g)
� Longitudinal acceleration: minimal (<±0.03 g)

Topic 4 b_e_e/b_e_d/b_e_f/b_e_c/b_e_g/b_d_e/b_f_e � Speed: low (1–32 kph), �residential speed limits
� Lateral acceleration: minimal (<±0.03 g)
� Longitudinal acceleration: moderate (±0.03 g to ±0.06 g)

Topic 5 d_f_e/d_d_e/d_c_e/d_g_e/d_e_e/c_e_e � Speed: high (73–96 kph), �highway/arterial speed limits
� Lateral acceleration: large (±0.03 g to ±0.2 g)
� Longitudinal acceleration: minimal (<±0.03 g)

Topic 6 e_e_e/e_e_d/e_e_f � Speed: very high (+96 kph), �freeway/controlled-access highway speed
limits

� Lateral acceleration: minimal (<±0.03 g)
� Longitudinal acceleration: minimal (<±0.03 g)

Topic 7 b_e_g/b_e_c/b_d_g/b_g_c/c_e_f/c_e_e/b_c_c/b_f_c/
b_c_g/c_e_g/b_g_g

� Speed: low (1–32 kph), �residential speed limits
� Lateral acceleration: large (±0.03 g to ±0.2 g)
� Longitudinal acceleration: large (±0.03 g to ±0.2 g)

Topic 8 d_e_f/d_e_d/d_e_g/c_e_c/e_e_f/c_e_g/d_d_f/c_f_c/
d_e_c/d_d_g/c_e_d/c_g_c/d_f_f/e_e_g

� Speed: ranges from mid to very high (32–96 + kph), �suburban to high-
way/arterial speed limits

� Lateral acceleration: moderate (±0.03 g to ±0.06 g)
� Longitudinal acceleration: large (±0.03 g to ±0.2 g)

Topic 9 c_e_e/c_e_f/c_e_d/c_d_e/c_f_e � Speed: mid (32–73 kph), �suburban speed limits
� Lateral acceleration: minimal (<±0.03 g)
� Longitudinal acceleration: minimal (<±0.03 g)

Topic 10 e_e_e/e_d_e/e_f_e/e_e_d/e_e_f � Speed: high (+96 kph), �freeway/controlled-access highway speed
limits

� Lateral acceleration: moderate (±0.03 g to ±0.06 g)
� Longitudinal acceleration: minimal (<±0.03 g)

a Letter Order: (speed letter)_(lateral acceleration letter)_(longitudinal acceleration letter).
b See Table 2 for the numeric ranges corresponding to the letters.

Fig. 6. Topic prevalence and description summary.
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and 7). Fig. 7 also shows the difference in topic prevalence for the drivers with and without OSA. As shown in the figure, of
the five topics with high importance in the Random Forest model, the drivers with OSA had a lower probability for the pres-
ence of Topics 2 and 7 and a higher probability for the presence of Topics 1 and 4 in their trip descriptions. Topics 1 and 4 are



Table 5
Example of numeric summary of key words for Topic 3.

Keywords Speed (kph)a Lateral acc. (g)b Longitudinal acc. (g)b Word probability � total probability of key words

d_e_e 84.5 0 0 0.71/0.84
d_e_f 84.5 0 0.045 0.07/0.84
d_e_d 84.5 0 0.045 0.06/0.84
Weighted mean values for Topic 3 84.5 0 0.007 –

a Mean speed values for each letter (kph): ‘‘a” = 0, ‘‘b” = 16, ‘‘c” = 52.5, ‘‘d” = 84.5, ‘‘e” = 96.
b Mean absolute acceleration values for each letter (g): ‘‘a” = 0.3, ‘‘b” = 0.25, ‘‘c” = 0.13, ‘‘d” = 0.045, ‘‘e” = 0, ‘‘f” = 0.045, ‘‘g” = 0.13, ‘‘h” = 0.25, ‘‘i” = 0.3.

Fig. 7. Topic importance, prevalence and description summary.
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related in that they are both defined by little to no lateral acceleration activity. Topics 2 and 7 are related in that they are
both defined by medium to high amounts of lateral acceleration activity. These results suggest lateral acceleration is a dif-
ferentiating factor for the two driver groups.

4. Discussion

4.1. Overview

We had two goals in conducting the analyses discussed in this paper: (1) to develop trip-level summaries of a naturalistic
driving dataset, without oversimplifying the summary by using measures of central tendency (i.e., means, medians, standard
deviations, etc.) in describing the continuous activity of maintaining vehicle control and (2) to use this advanced description
to compare the behavior of drivers with and without OSA. These goals were accomplished by using SAX and topic modeling
to identify patterns in speed and acceleration data from the drivers’ trips. Topic models with 2, 5, 10, 15 and 20 topics were
developed and compared. Three approaches were used to compare the models. First, the descriptiveness of the topics was
compared. Increasing the number of topics from two to ten changed the topic definitions from only describing the general
differences in the speeds selected by drivers during the trips to a more specific description of the changes in lateral and lon-
gitudinal acceleration while driving at certain speeds. Further increases in the number of topics from ten to twenty led to
many topics with overlapping definitions. These additional topics were undesirable as they reduced the model interpretabil-
ity. Second, the models were compared using perplexity, a common metric for examining the fit of language models. Based
on this metric the fit improved with an increase in the number of topics. However, the improvement plateaued after the ten-
topic model. Finally, the models were compared in terms of their ability to distinguish trips made by drivers with OSA from
the trips made by the comparison drivers. For this analysis, the set of topic probabilities for each trip were used as the input
to a Random Forest classification model. The twenty-topic model had the best RF model performance with an AUC = 0.73.
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However, the performance of the twenty-topic model was not substantially different from the performance of the ten-topic
model (AUC = 0.69) despite doubling the number of input variables.

Based on the descriptiveness of the topics, the model’s fit based on perplexity, and the RF model performance, the ten-
topic model was selected as the one that balanced specificity with potential for generalization. The ten-topic model was fur-
ther investigated to better understand the systematic differences in the topic probabilities identified by the RF model for the
trips from the two driver groups. In measuring the importance of the topics, the topics describing the amount of lateral accel-
eration while driving at mid to low speeds differentiated the two groups. The comparison drivers had higher probabilities for
topics indicating significant amounts of lateral acceleration and the OSA drivers had higher probabilities for topics indicating
little to no amount of lateral acceleration. As part of an exploratory analysis, the results raise new questions. (1) Would the
same differences be found if the model was applied to a new sample? Using cross-validation when assessing the model per-
formance suggests the findings will generalize; however, true generalization requires that the models be applied to a new
sample of drivers. (2) Assuming the results do generalize, why did drivers with OSA have less lateral acceleration activity?
Were the groups driving in different contexts or were they in similar contexts with different behaviors? As context was not
directly observed, but inferred from speed, this remains an open question. Further analyses taking into consideration the
spatial and time information of the naturalistic driving data could shed light on this distinction. (3) How do these group level
differences translate into effects at the level of individual drivers? Prior work has found a correlation between the severity of
an individual’s OSA condition and the amount of increased crash risk (Williamson et al., 2011). Considering these results, it is
of interest to explore if there are variations in the driving behavior between drivers with different severity levels of OSA and
within the results for a single driver who experiences nights with varying levels of sleep restriction.

4.2. Advantages of topic models

The driving patterns described by the topics in the ten-topic model cover a wide range of driving contexts and behaviors.
The overall prevalence of the topics in the data reflects typical travel patterns on different roadway types, with most travel
occurring on mid to low speed roads that provide access and less travel occurring on high speed roads that provide mobility
(Meyer & Miller, 2001). The topics also reflect typical behaviors while driving on these roads, with more limited acceleration
changes occurring on high-speed roads and significant lateral and longitudinal changes occurring on mid and low- speed
roads due to driving maneuvers such as turns and stops initiated in response to encountering at-grade intersections and traf-
fic control devices (Roess, Prassas, & McShane, 2011). The ability of topic models to identify these patterns in an unsuper-
vised manner makes it a promising method for exploratory analyses. Furthermore, it enables a comparison of drivers in
terms of how they responded to more general roadway demands.

Most investigations using naturalistic driving data to study the effect of OSA or drowsiness on drivers focus on events of
interest, such as the number of eye blinks or the occurrence of high g-force accelerations (Barr et al., 2005; Hanowski et al.,
2003; Rau, 2005). In this paper the question is approached differently, by not focusing on specific events that occur during a
trip and instead using data from the entire trip as the unit of analysis. The ability of a topic model to leverage, in an unsu-
pervised manner, small units of data to generate a picture of the larger dataset made it an ideal tool for this analysis. Unlike
some other unsupervised machine learning methods, particularly the more commonly used methods such as k-means or
principal component analysis, topic modeling does not make linear assumptions about the structure of the patterns in
the data. Topic models also recognize the association of data elements with multiple groups or topics, unlike the single group
membership approach used in the typical categorization methods such as k-means clustering (Jain, 2010). These features
make topic modeling a method with substantial promise as a general tool to explore the vast, unknown contents of the data-
sets generated by naturalistic driving studies. The ‘‘big picture” view of the data generated by topic models can provide con-
text for interpreting analyses that rely on events and other forms of data segmentation. In addition to its value for
exploratory analyses, topic modeling is a more sophisticated data summary method than other methods that use means,
standard deviations, or counts. Topic models can capture subtle elements of behavior that might otherwise be obscured
by these measures of central tendency. Topic modeling can provide additional benefits when used in combination with tra-
ditional analyses. The analyses described in this paper used the topic modeling results as features in a random forest clas-
sification model. Using the topics as features instead of using the raw or summarized data observations as the random forest
input increased the interpretability of the classification results (Deng, Runger, Tuv, & Vladimir, 2013; Farrahi & Gatica-Perez,
2011; Huynh et al., 2008). Adding topics as a covariate to a regression model of high g acceleration events may significantly
reduce unexplained variance. Other advantages of topic models may be obtained by using algorithms different from the sim-
ple LDA topic model used in this paper. For example, structural topic models make it possible to include covariates as meta-
data to help develop the topics (Roberts et al., 2014).

4.3. Topic interpretation

As an unsupervised method, topic models identify data topics without input from the analyst, other than setting the num-
ber of topics. However, an analyst is needed to define and interpret the meaningfulness of the topics generated. Examination
of the topic key words and visualization of the raw data to observe what items the model gives similar topic definitions can
be helpful for validation (Chuang, Manning, & Heer, 2012). However, topic interpretation is recognized as a challenge even
for literary analyses, which, unlike the artificially constructed words in the present analysis, involve real words that connect
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to established concepts (Chang et al., 2009). The task of interpretation is further complicated by the ability of the method to
generate results regardless of the number of topics selected. In this sense, topic modeling is similar to clustering, another
unsupervised method that requires domain knowledge to determine the significance and interpretation of the output
(Jain, 2010).

In this study, speed, lateral and longitudinal acceleration data were the variables selected for analysis and SAX was used
to prepare the numeric driving data for the topic model analysis. A similar procedure could be used to prepare other driving
data collected, including vehicle-based variables such as vehicle headway or driver-based variables such as eye gaze location.
This study also demonstrated topic models can be used for time-synced, multivariate analyses, an analysis that is desirable
to leverage the synchronous data collection process used in naturalistic driving studies.
5. Conclusion

Analyses of naturalistic driving data offer an opportunity to learn about drivers, the strategies and behaviors they use to
navigate in the world and how impaired states such as drowsiness contribute to crashes. However, the size and complexity
of the datasets make it challenging to obtain these insights. Considering these challenges, typical analysis methods focus on
identifying critical events in the data while summarizing the remainder of the data using measures of central tendency. In
this exploratory paper, topic modeling was used to shift the focus from critical events to continuous activities when describ-
ing naturalistic driving data and identifying characteristics that distinguished drivers with and without OSA. The method
provided a holistic description of the data that might have been lost by using methods that simply determine the central
tendency across the trips. Topic modeling is a useful complement to the more traditional event-focused analysis methods
because it provides an understanding of the context surrounding the local influences observed in critical events.
Funding source

Funding: This work was supported by the National Institutes of Health [grant number RO1 HL091917].
References

Aksan, N., Dawson, J. D., Tippin, J., Lee, J. D., & Rizzo, M. (2015). Effects of fatigue on real-world driving in diseased and control participants. Proceedings of the
Ellipsis International Driving Symposium on Human Factors in Driver Assessment, Training, and Vehicle Design, 2015, 268–274. Retrieved from http://www.
ncbi.nlm.nih.gov/pubmed/26618204.

American Academy of Sleep Medicine (AASM) (2014). International classification of sleep disorders: Diagnostic and coding manual (3rd ed.). Darien, IL:
American Academy of Sleep Medicine. Retrieved from <http://www.aasmnet.org/library/default.aspx?id=9>.

Archer, K., & Kimes, R. (2008). Empirical characterization of random forest variable importance measures. Computational Statistics & Data Analysis, 52(4),
2249–2260. Retrieved from http://www.sciencedirect.com/science/article/pii/S0167947307003076.

Bärgman, J., Lisovskaja, V., Victor, T., Flannagan, C., & Dozza, M. (2015). How does glance behavior influence crash and injury risk? A ‘‘what-if” counterfactual
simulation using crashes and near-crashes from SHRP2. Transportation Research Part F: Traffic Psychology and Behaviour, 35, 152–169. https://doi.org/
10.1016/j.trf.2015.10.011.

Barr, L., Yang, C. Y. D., Hanowski, R. J., & Olson, R. (2005). Assessment of driver fatigue, distraction, and performance in a naturalistic setting. Transportation
Research Record: Journal of the Transportation Research Board (Vol. 1937). http://doi.org/10.3141/1937-08.

Baydogan, M. G., Runger, G., & Tuv, E. (2013). A bag-of-features framework to classify time series. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(11), 2796–2802. https://doi.org/10.1109/TPAMI.2013.72.

Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM. Retrieved from <http://dl.acm.org/citation.cfm?id=2133826>.
Blei, D. M., & Lafferty, J. D. (2007). A correlated topic model of Science. The Annals of Applied Statistics, 1(1), 17–35. https://doi.org/10.1214/07-AOAS114.
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.
Bosetti, P., Da Lio, M., & Saroldi, A. (2014). On the human control of vehicles: An experimental study of acceleration. European Transport Research Review, 6

(2), 157–170. https://doi.org/10.1007/s12544-013-0120-2.
Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145–1159.

https://doi.org/10.1016/S0031-3203(96)00142-2.
Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
Bricka, S., & Bhat, C. (2006). Comparative analysis of global positioning system-based and travel survey-based data. Transportation Research Record: Journal of

the Transportation Research Board, 1972, 9–20. https://doi.org/10.3141/1972-04.
Carney, C., Harland, K. K., & McGehee, D. V. (2016). Using event-triggered naturalistic data to examine the prevalence of teen driver distractions in rear-end

crashes. Journal of Safety Research, 57, 47–52. https://doi.org/10.1016/j.jsr.2016.03.010.
Chang, J., Boyd-Graber, J., Gerrish, S., Wang, C., & Blei, D. M. (2009). Reading tea leaves: How humans interpret topic models. Advances in Neural Information

Processing Systems, 288–296.
Chuang, J., Manning, C., & Heer, J. (2012). Termite: Visualization techniques for assessing textual topic models. Proceedings of the International Working

Conference on Advanced Visual Interfaces, ACM, 74–77. Retrieved from http://dl.acm.org/citation.cfm?id=2254572.
Contardi, S., Pizza, F., Sancisi, E., Mondini, S., & Cirignotta, F. (2004). Reliability of a driving simulation task for evaluation of sleepiness. Brain Research

Bulletin, 63(5), 427–431. https://doi.org/10.1016/j.brainresbull.2003.12.016.
Deng, H., Runger, G., Tuv, E., & Vladimir, M. (2013). A time series forest for classification and feature extraction. Information Sciences, 239, 142–153. https://

doi.org/10.1016/J.INS.2013.02.030.
Dingus, T. A., Guo, F., Lee, S., Antin, J. F., Perez, M., Buchanan-King, M., & Hankey, J. (2016). Driver crash risk factors and prevalence evaluation using

naturalistic driving data. Proceedings of the National Academy of Sciences of the United States of America, 113(10), 2636–2641. https://doi.org/10.1073/
pnas.1513271113.

Dozza, M., Bärgman, J., & Lee, J. D. (2013). Chunking: A procedure to improve naturalistic data analysis. Accident Analysis & Prevention, 58, 309–317. https://
doi.org/10.1016/j.aap.2012.03.020.

Eskandarian, A., Mortazavi, A., & Sayed, R. A. (2012). Drowsy and fatigued driving problem significance and detection based on driver control functions. In
Handbook of intelligent vehicles (pp. 941–974). London: Springer, London. http://doi.org/10.1007/978-0-85729-085-4_36.

http://www.ncbi.nlm.nih.gov/pubmed/26618204
http://www.ncbi.nlm.nih.gov/pubmed/26618204
http://www.aasmnet.org
http://www.sciencedirect.com/science/article/pii/S0167947307003076
https://doi.org/10.1016/j.trf.2015.10.011
https://doi.org/10.1016/j.trf.2015.10.011
https://doi.org/10.3141/1937-08
https://doi.org/10.1109/TPAMI.2013.72
http://dl.acm.org
https://doi.org/10.1214/07-AOAS114
http://refhub.elsevier.com/S1369-8478(17)30255-3/h0045
https://doi.org/10.1007/s12544-013-0120-2
https://doi.org/10.1016/S0031-3203(96)00142-2
http://refhub.elsevier.com/S1369-8478(17)30255-3/h0060
https://doi.org/10.3141/1972-04
https://doi.org/10.1016/j.jsr.2016.03.010
http://refhub.elsevier.com/S1369-8478(17)30255-3/h0075
http://refhub.elsevier.com/S1369-8478(17)30255-3/h0075
http://dl.acm.org/citation.cfm?id=2254572
https://doi.org/10.1016/j.brainresbull.2003.12.016
https://doi.org/10.1016/J.INS.2013.02.030
https://doi.org/10.1016/J.INS.2013.02.030
https://doi.org/10.1073/pnas.1513271113
https://doi.org/10.1073/pnas.1513271113
https://doi.org/10.1016/j.aap.2012.03.020
https://doi.org/10.1016/j.aap.2012.03.020
https://doi.org/10.1007/978-0-85729-085-4_36


38 E.J. McLaurin et al. / Transportation Research Part F 58 (2018) 25–38
Farrahi, K., & Gatica-Perez, D. (2011). Discovering routines from large-scale human locations using probabilistic topic models. ACM Transactions on Intelligent
Systems and Technology (TIST), 2(1), 3. Retrieved from http://dl.acm.org/citation.cfm?id=1889684.

Forsman, P. M., Vila, B. J., Short, R. A., Mott, C. G., & Van Dongen, H. P. A. (2013). Efficient driver drowsiness detection at moderate levels of drowsiness.
Accident Analysis and Prevention, 50, 341–350. https://doi.org/10.1016/j.aap.2012.05.005.

Fuller, R. (2005). Towards a general theory of driver behaviour. Accident Analysis & Prevention, 37(3), 461–472. https://doi.org/10.1016/j.aap.2004.11.003.
Guo, F., & Hankey, J. (2009). Modeling 100-car safety events: A case-based approach for analyzing naturalistic driving data. Final report. Retrieved from

<https://www.researchgate.net/profile/Feng_Guo16/publication/265045998_Modeling_100-Car_Safety_Events_A_Case-Based_Approach_for_
Analyzing_Naturalistic_Driving_Data_Final_Report/links/5630c49208aef3349c29f526.pdf>.

Hanowski, R. J., Wierwille, W. W., & Dingus, T. A. (2003). An on-road study to investigate fatigue in local/short haul trucking. Accident Analysis & Prevention,
35(2), 153–160. https://doi.org/10.1016/S0001-4575(01)00098-7.

Hornik, K., & Grün, B. (2011). Topicmodels: An R package for fitting topic models. Journal of Statistical Software, 40(13), 1–30. Retrieved from http://epub.wu.
ac.at/3987/.

Huynh, T., Fritz, M., & Schiele, B. (2008). Discovery of activity patterns using topic models. Proceedings of the 10th international conference on ubiquitous
computing, ACM, pp. 10–19. Retrieved from <http://dl.acm.org/citation.cfm?id=1409638>.

Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651–666. https://doi.org/10.1016/j.patrec.2009.09.011.
Klauer, S., Dingus, T. A., Neale, V., Sudweeks, J., & Ramsey, D. J. (2006). The impact of driver inattention on near-crash/crash risk: An analysis using the 100-car

naturalistic driving study data. Blacksburg, VA. Retrieved from <http://trid.trb.org/view.aspx?id=786825>.
Krajewski, J., & Sommer, D. (2009). Steering wheel behavior based estimation of fatigue. In 5th International driving symposium on human factors in driver

assessment, training, and vehicle design (pp. 118–124). Retrieved from <http://www.wirtschaftspsychologie.uni-wuppertal.de/fileadmin/wieland/
lehrstuhl/Krajewski_Draw/017_KrajewskiSommer.pdf>.

Kuhn, M. (2008). Building predictive models in R using the caret package. Journal of Statistical Software, 28(5), 1–26. https://doi.org/10.1053/
j.sodo.2009.03.002.

Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3), 18–22. Retrieved from http://ai2-s2-pdfs.s3.amazonaws.com/
6e63/3b41d93051375ef9135102d54fa097dc8cf8.pdf.

Lin, J., & Li, Y. (2009). Finding structural similarity in time series data using bag-of-patterns representation. In Proceedings of the 21st international conference
on scientific and statistical database management (pp. 461–477). Springer-Verlag. http://doi.org/10.1007/978-3-642-02279-1_33.

Lin, J., Keogh, E., Wei, L., & Lonardi, S. (2007). Experiencing SAX: A novel symbolic representation of time series. Data Mining and Knowledge Discovery, 15(2),
107–144. Retrieved from http://www.springerlink.com/index/pdf/10.1007/s10618-007-0064-z.

McDonald, A. D., Lee, J. D., Aksan, N., Dawson, J. D., Tippin, J., & Rizzo, M. (2013). The language of driving: Advantages and applications of symbolic data
reduction for analysis of naturalistic driving data. Transportation Research Record: Journal of the Transportation Research Board, 2392, 22–30. https://doi.
org/10.3141/2392-03.

McDonald, A. D., Lee, J. D., Aksan, N. S., Dawson, J. D., Tippin, J., & Rizzo, M. (2017). Using kinematic driving data to detect sleep apnea treatment adherence.
Journal of Intelligent Transportation Systems, 1–13. https://doi.org/10.1080/15472450.2017.1369060.

McDonald, A. D., Lee, J. D., Schwarz, C., & Brown, T. L. (2013). Steering in a random forest: Ensemble learning for detecting drowsiness-related lane
departures. Human Factors: The Journal of the Human Factors and Ergonomics Society, 56(5), 986–998. https://doi.org/10.1177/0018720813515272.

McDonald, A. D., Lee, J. D., Schwarz, C., & Brown, T. L. (2018). A contextual and temporal algorithm for driver drowsiness detection. Accident Analysis and
Prevention, 113, 25–37. https://doi.org/10.1016/j.aap.2018.01.005.

Meyer, M., & Miller, E. (2001). Urban transportation planning: A decision-oriented approach (2nd ed.). Boston: McGraw-Hill.
National Highway Traffic Safety Administration (NHTSA). (2012). Summary of state speed laws (12th ed.). Washington, DC.
Rau, P. (2005). Drowsy driver detection and warning system for commercial vehicle drivers: Field operational test design, data analyses, and progress. National

highway traffic safety administration. Retrieved from <https://www-nrd.nhtsa.dot.gov/Pdf/nrd-01/ESV/esv19/Other/Print 20.pdf>.
Reymond, G., Kemeny, A., Droulez, J., & Berthoz, A. (2001). Role of lateral acceleration in curve driving: Driver model and experiments on a real vehicle and a

driving simulator. Human Factors: The Journal of the Human Factors and Ergonomics Society, 43(3), 483–495. Retrieved from http://hfs.
sagepub.com/content/43/3/483.short.

Rice, R. (1973). Measuring car-driver interaction with the gg diagram. SAE technical paper. Retrieved from <http://papers.sae.org/730018/>.
Roberts, M., Stewart, B., Tingley, D., Lucas, C., Leder-Luis, J., Gadarian, S., ... Rand, D. (2014). Structural topic models for open-ended survey responses.

American Journal of Political Science, 58(4), 1064–1082. Retrieved from http://www.jstor.org/stable/24363543.
Roess, R. P., Prassas, E. S., & McShane, W. R. (2011). Traffic engineering (4th ed.). Upper Saddle River, NJ: Prentice Hall.
Seppelt, B. D., & Lee, J. D. (2007). Making adaptive cruise control (ACC) limits visible. International Journal of Human-Computer Studies, 65(3), 192–205.

https://doi.org/10.1016/j.ijhcs.2006.10.001.
Steyvers, M., & Griffiths, T. (2007). Probabilistic topic models. In T. Landauer, D. McNamara, S. Dennis, & W. Kintsch (Eds.), Latent semantic analysis: A road to

meaning. Laurence Erlbaum. Retrieved from <https://books.google.com/books?hl=en&lr=&id=JbzCzPvzpmQC&oi=fnd&pg=PA427&dq=Probabilistic
+topic+models+steyvers&ots=aMN5O4Q_LI&sig=DpixZiOg2aOXqwgSVt3NMedDkm4>.

Thiffault, P., & Bergeron, J. (2003). Monotony of road environment and driver fatigue: A simulator study. Accident Analysis & Prevention, 35(3), 381–391.
https://doi.org/10.1016/S0001-4575(02)00014-3.

Tippin, J., Aksan, N., Dawson, J. D., & Rizzo, M. (2013). Neuroergonomics of sleep and alertness. In Neuroergonomics (pp. 110–128). London: Palgrave
Macmillan UK. http://doi.org/10.1057/9781137316523_6.

Tregear, S., Reston, J., Schoelles, K., & Phillips, B. (2009). Obstructive sleep apnea and risk of motor vehicle crash: Systematic review and meta-analysis.
Journal of Clinical Sleep Medicine, 5(6), 573–581. Retrieved from http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&
AN=20465027.

Turkington, P. M., Sircar, M., Allgar, V., & Elliott, M. W. (2001). Relationship between obstructive sleep apnoea, driving simulator performance, and risk of
road traffic accidents. Thorax, 56(10), 800–805. https://doi.org/10.1136/THORAX.56.10.800.

Van Der Maaten, L., Postma, E., & Van Den Herik, J. (2009). Dimensionality reduction: A comparative review. Journal of Machine Learning Research, 10, 66–71.
Retrieved from http://www.uvt.nl/ticc.

Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., & Keogh, E. (2013). Experimental comparison of representation methods and distance
measures for time series data. Data Mining and Knowledge Discovery, 26(2), 275–309. https://doi.org/10.1007/s10618-012-0250-5.

Williamson, A., Lombardi, D. A., Folkard, S., Stutts, J., Courtney, T. K., & Connor, J. L. (2011). The link between fatigue and safety. Accident Analysis and
Prevention, 43(2), 498–515. https://doi.org/10.1016/j.aap.2009.11.011.

Wu, K.-F., & Jovanis, P. P. (2013). Defining and screening crash surrogate events using naturalistic driving data. Accident Analysis & Prevention, 61, 10–22.
https://doi.org/10.1016/j.aap.2012.10.004.

Yuan, Y., Du, F., Qu, W., Zhao, W., & Zhang, K. (2016). Identifying risky drivers with simulated driving. Traffic Injury Prevention, 17(1), 44–50. https://doi.org/
10.1080/15389588.2015.1033056.

http://dl.acm.org/citation.cfm?id=1889684
https://doi.org/10.1016/j.aap.2012.05.005
https://doi.org/10.1016/j.aap.2004.11.003
https://www.researchgate.net
https://www.researchgate.net
https://doi.org/10.1016/S0001-4575(01)00098-7
http://epub.wu.ac.at/3987/
http://epub.wu.ac.at/3987/
http://dl.acm.org
https://doi.org/10.1016/j.patrec.2009.09.011
http://trid.trb.org
http://www.wirtschaftspsychologie
http://www.wirtschaftspsychologie
https://doi.org/10.1053/j.sodo.2009.03.002
https://doi.org/10.1053/j.sodo.2009.03.002
http://ai2-s2-pdfs.s3.amazonaws.com/6e63/3b41d93051375ef9135102d54fa097dc8cf8.pdf
http://ai2-s2-pdfs.s3.amazonaws.com/6e63/3b41d93051375ef9135102d54fa097dc8cf8.pdf
https://doi.org/10.1007/978-3-642-02279-1_33
http://www.springerlink.com/index/pdf/10.1007/s10618-007-0064-z
https://doi.org/10.3141/2392-03
https://doi.org/10.3141/2392-03
https://doi.org/10.1080/15472450.2017.1369060
https://doi.org/10.1177/0018720813515272
https://doi.org/10.1016/j.aap.2018.01.005
http://refhub.elsevier.com/S1369-8478(17)30255-3/h0200
https://www-nrd.nhtsa.dot.gov
http://hfs.sagepub.com/content/43/3/483.short
http://hfs.sagepub.com/content/43/3/483.short
http://papers.sae.org/730018/
http://www.jstor.org/stable/24363543
http://refhub.elsevier.com/S1369-8478(17)30255-3/h0230
https://doi.org/10.1016/j.ijhcs.2006.10.001
https://books.google.com/
https://books.google.com/
https://doi.org/10.1016/S0001-4575(02)00014-3
https://doi.org/10.1057/9781137316523_6
http://ovidsp.ovid.com/ovidweb.cgi?T=JS%26CSC=Y%26NEWS=N%26PAGE=fulltext%26D=medl%26AN=20465027
http://ovidsp.ovid.com/ovidweb.cgi?T=JS%26CSC=Y%26NEWS=N%26PAGE=fulltext%26D=medl%26AN=20465027
https://doi.org/10.1136/THORAX.56.10.800
http://www.uvt.nl/ticc
https://doi.org/10.1007/s10618-012-0250-5
https://doi.org/10.1016/j.aap.2009.11.011
https://doi.org/10.1016/j.aap.2012.10.004
https://doi.org/10.1080/15389588.2015.1033056
https://doi.org/10.1080/15389588.2015.1033056

	Using topic modeling to develop multi-level descriptions of naturalistic driving data from drivers with and without sleep apnea
	1 Introduction
	1.1 Drowsiness effects in controlled environments
	1.2 Drowsiness effects in naturalistic environments
	1.3 Limitation of typical naturalistic driving data analysis approach
	1.4 Changing from critical events to topics

	2 Methods
	2.1 Data description
	2.2 Processing of driving data
	2.3 Data reduction and conversion
	2.3.1 SAX data aggregation process
	2.3.2 Bin thresholds
	2.3.3 Driving word meanings

	2.4 Identifying patterns using topic modeling
	2.5 Comparing trip descriptions from different drivers using random forests

	3 Results
	3.1 Differences in topic models—topic definitions
	3.2 Differences in topic models—driver condition prediction
	3.3 In-depth investigation of the ten-topic model
	3.3.1 Ten-topic model topic descriptions
	3.3.2 Random forest results for the ten-topic model


	4 Discussion
	4.1 Overview
	4.2 Advantages of topic models
	4.3 Topic interpretation

	5 Conclusion
	Funding source
	References


