PATHOLOGY/MICROBIOLOGY

Volume 1, Issue 2 July—September 2005

UNIVERSITY OF NEBRASKA MEDICAL CENTER

Increased Risk of Staphylococcus Infections

Staphylococcus infections once associated with hospitalization, surgery and residence in long-term care facilities are now striking healthy individuals. The experts are not quite sure why this is occurring.

Staph, which is commonly present on the skin or in the nose of healthy people, is the cause of some of the most common cases of minor skin infections in the United States. Currently, about 50 to 60 percent of staph infections are resistant to multiple kinds of antibiotics, making staph much more difficult to treat.

Antibiotic resistance is considered to be one of the most urgent priorities in public health and is responsible for increasing deaths and severity of disease, as well as rising health care costs.

Antibiotic resistance is the result of microbes changing in ways that reduce or eliminate the effectiveness of drugs, chemicals, or other agents, to cure or prevent infections.

Staph will be one of the biggest health challenges in the next five years. If the existing antibiotic drugs don’t work, the world will be in serious trouble.

With these concerns, UNMC recently formed a new research group focused on the local and national problem of staphylococcus infections. Members include: Paul Fey, Ph.D., Ken Bayles, Ph.D., Steven Hinrichs, M.D., Paul Dunman, Ph.D., and Mark Rupp, M.D., all of UNMC, as well as Greg Somerville, Ph.D., of the University of Nebraska-Lincoln; and Creighton University’s Richard Goering, Ph.D. The group will study methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis.

Each investigator has their own niche, and the goal is to collaborate on large grants and projects. Dr. Fey’s research will focus on staph’s clinical epidemiology—how the bacteria avoids detections and treatment.

Dr. Bayle's research focuses on staph’s pathogenesis—how it causes disease. He will apply his knowledge about how the bacteria lives and more importantly, how it dies.

Dr. Dunman, who is recognized as a worldwide expert in staphylococcal genomics, will focus on gene expression and antibiotic development.

Dr. Rupp’s research will focus on the clinical epidemiology of staph. Dr. Rupp stated that staph has developed resistance to every antibiotic developed thus far.

Dr. Somerville is a staphylococcal physiologist who has been studying the metabolism and physiology of the staph organism since 1999.

Dr. Goering, a molecular epidemiologist, is one of the first in the United States who specializes in staphylococci and MRSA. He has been studying staph for about 30 years. Dr. Goering will track the spread of the organism by the bacteria's genetic “fingerprint.”

As with any infection, if it’s recognized and treated properly, it’s okay. There are still effective drugs. Personal hygiene and infection control in hospitals are key to breaking the cycle.

<table>
<thead>
<tr>
<th>Inside this issue:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter From The Chairman</td>
<td>2</td>
</tr>
<tr>
<td>Grant For Lymphoma Research</td>
<td>3</td>
</tr>
<tr>
<td>New Instrument to Benefit Researchers</td>
<td>4</td>
</tr>
<tr>
<td>Breast Cancer Vaccine Trial</td>
<td>5</td>
</tr>
<tr>
<td>Residents Corner</td>
<td>7</td>
</tr>
<tr>
<td>Department of Pathology Remembers Dr. Neff</td>
<td>8</td>
</tr>
</tbody>
</table>
Much has happened in the past few months, including the naming of Dr. Sonny L. Johansson as the first Amelia F. and Austin L. Vickery, Jr., Chair in Pathology in honor of a former graduate of the Nebraska College of Medicine and world-renowned pathologist, Austin L. Vickery, Jr. In addition, Dr. John Chan will be named the first Amelia F. and Austin L. Vickery, Jr., Professor in Pathology effective January 1, 2006.

Although several other major happenings have occurred recently in the department, I would like to devote my column this quarter to Phyllis Muellenberg. On December 31, 2005, Phyllis will step down as Director of the Division of Medical Technology in our School of Allied Health Professions, a position she has held since 1984. Thankfully, Phyllis will remain on our faculty after that to continue the many programs that she has already begun as well as to assist her successor, Linda Fell, who was recently appointed to that position. Congratulations Linda!

Phyllis is an extraordinary individual, and her accomplishments with our medical technology school have been outstanding and have made the school one of the premiere educational programs at the University of Nebraska and nation wide.

Phyllis began her career in medical technology education in 1968 at the Methodist Hospital and became director of the program at UNMC in 1984. She rose to the rank of Professor in 2003, based on her many accomplishments in education and the extensive extramural grant funding that she procured. Innovation has been the hallmark of her 21 years as leader of our program. This has included development of new programs at the Omaha site, including molecular diagnostics, but more importantly, extensive outreach of the program throughout the state, to surrounding states, and now to foreign countries, based on extensive development of distance learning technologies. As she would be the first to tell you, she has been able to achieve these accomplishments because of the outstanding individuals that she has had as faculty in her program as well as the numerous individuals she cajoled into participating in the program at other sites. Her enthusiasm, can-do attitude, and optimism have been infectious for all involved, and has lead to the incredible achievements that this group has accomplished. This ultimately was recognized by the awarding to our medical technology school the Nebraska University-wide Outstanding Department Teaching Award. She has also received numerous awards locally, regionally, and nationally for her many contributions to the field of medical technology and medical technology education.

Most recently she has begun development of a graduate (masters) program for clinical laboratory sciences. To assist her toward that goal, the pathologists of the University Medical Associates will establish a fellowship in her honor with an initial donation of ten thousand dollars. Anyone who would also like to contribute to this fund can contact Julie Moreno in our department. Phyllis is leaving a legacy in medical technology education that is widely recognized as one of the most outstanding programs in the nation and the world. It is an honor and privilege to have Phyllis as a colleague, and we look forward to her continued contributions in the years to come.
Following several months of negotiation, more than $3 million (USD) in technology development funding will be coming to Nebraska for the commercialization of a new technology developed at UNMC. International investors from Ireland and Switzerland have committed a total of five million Euros to the overall project, of which approximately half will come to Nebraska. The funding is to help in phase one in the search for a new biotechnology molecule to fight intestinal infections in both humans and animals that was discovered by Dr. Thomas McDonald and his colleague, Annika Weber, M.S. at UNMC.

The molecule is a peptide that acts by increasing production of a natural protective barrier in the gut called mucin 3. When mucin 3 is lacking, or at low levels in the intestine, the risk of infection dramatically increases, particularly in newborns and immune compromised individuals.

Dr. McDonald says “MAA jump starts the production of the mucin gene to produce mucin 3, helping to prevent infectious organisms like E.Coli, Salmonella and Rotavirus from sticking to the gut’s inner walls.”

Tri-Med Research’s Vice President Annika Weber says “The beginning $3 million in funding will initially focus on the continued development of the MAA technology toward commercialization, establishing a base for the company and adding a few jobs. Eventually, growth of the firm should add an additional five to eight employees, along with a fair measure of expanded facilities investment. In the long run, this company is going to be good for Nebraska’s economy!”

UNMC has received a nearly $9 million grant from the National Cancer Institute (NCI) to better diagnose lymphomas through microarray technology. The technology uses a specialized Diagnostic Lymphdx Array “chip” to study cancerous genes.

The beginning $3 million in funding will initially focus on the continued development of the MAA technology toward commercialization, establishing a base for the company and adding a few jobs. Eventually, growth of the firm should add an additional five to eight employees, along with a fair measure of expanded facilities investment. In the long run, this company is going to be good for Nebraska’s economy!”

UNMC has received a nearly $9 million grant from the National Cancer Institute (NCI) to better diagnose lymphomas through microarray technology. The technology uses a specialized Diagnostic Lymphdx Array “chip” to study cancerous genes.

The technology helps researchers profile or “decode” genes to find what causes the cancer. In the past five to six years, the team has discovered so-called “signatures” that appear to define different types of lymphomas.

Besides UNMC, the study also is being conducted at the NCI and in New York, Arizona, Ohio, Canada, Spain, The United Kingdom, Germany, and Norway.

Researchers are making progress in giving physicians the ability to tailor cancer treatment for patients. Physicians and scientists expect this information will someday predict how aggressive a patient’s cancer is and whether the cancer is resistant to chemotherapy.

The Lymphoma Study Consortium formed about six years ago. Since then it has studied 700 to 800 patient tumor cases and will study 2,400 cases in the new study.

Genetic profiling of tumors will offer extra power in predicting which patients will do well and which will do poorly. This more precise diagnosis should help in the future in more accurately guiding a patient’s treatment decisions.

To date, only limited amounts of targets have been identified. Most cancer treatments such as chemotherapy are applied broadly and are toxic.

Wing “John” Chan, M.D., Professor of Pathology and Microbiology and Co-director of the Center for Lymphoma and Leukemia Research at UNMC, says that they hope to develop a more targeted therapy.

A drug was developed for chronic Myelogenous Leukemia (CML) that targets an abnormal tyrosine kinase. Many patients can go into remission with minimal side effects.

The group hopes to find similar targets for which to develop specific therapy, not something that kills a lot of normal cells, like chemotherapy.
James Linder, M.D., FASCP
Associate Vice Chancellor for Research

James Linder, M.D., a key administrator and faculty member at UNMC for nearly 20 years, is returning to Nebraska as Associate Vice Chancellor for Research.

Linder's goal is to further enable clinical research at UNMC. That includes expanding research activities in clinical departments in the colleges of medicine, nursing, pharmacy and dentistry.

Dr. John Gollan, M.D., Ph.D., Dean of the UNMC College of Medicine said that Linder is a critical step in moving UNMC forward in its quest to become a world-class academic medical center.

Dr. Rod Markin, M.D., Ph.D., President and CEO of University Medical Associates, Associate Dean of UNMC College of Medicine, and Vice Chair of Pathology, said “There is nothing that Jim Linder does that fails. Everything he works on is successful.”

2005 Israel Davidsohn Award Recipient

James Linder, a past president of ASCP, will be honored with the ASCP 2005 Israel Davidsohn Award for Distinguished Service. The award recognizes an ASCP member who has made a significant contribution to the Society by participating in a variety of roles throughout their careers.

Dr. Linder is Senior Vice President and Chief Medical Officer of Cytyc Corporation, Boxborough MA, and Professor of Pathology and Microbiology at UNMC. He earned his medical doctor degree from UNMC. After residency training in pathology at Duke University, he returned to the University of Nebraska, where he has been on the faculty since 1983.

During this time he held many administrative positions, including Vice Chair of Pathology and Microbiology, Director of Surgical Pathology and Cytology, Associate Dean for Academic Affairs, and Interim Dean of the College of Medicine. Dr. Linder was also a visiting professor at the Peter Kiewit Institute for Information Science and Technology at the University of Nebraska Omaha (UNO) to develop interdisciplinary programs in biomedical technologies.

Dr. Linder has authored over 130 publications and six textbooks. He is an editor and member of several journal editorial boards. Dr. Linder’s academic interests have centered on the application of new technology in medical diagnostics and the use of automated techniques in cytopathology.

New Instrument to Benefit Researchers

UNMC continues to benefit from the provisions of the 2001 Tobacco Settlement Biomedical Research Initiative (LB692). Over the next two years, the state’s four biomedical research institutions will receive $12 million each year. UNMC will receive about half of the distribution.

As part of the most recent settlement, UNMC bought a $400,000 BIAcore 3000 instrument to serve researchers at UNMC and beyond.

Donald Johnson, Ph.D., Associate Professor, UNMC Department of Pathology and Microbiology, said, “The BIAcore instrument is mostly being used in biomedical companies with interests in biotechnology. Nebraska is one of the few states using tobacco settlement money for health care and biomedical research.”

Jodi Booth, Technical Director, UNMC Molecular Interaction Facility in the Durham research Center, said the BIAcore instrument can evaluate antibodies which are used to treat cancer and infectious diseases. It will eventually be the standard for testing antibodies and therapeutic drugs.

The system can analyze molecules and their interaction with each other, as well as how viruses interact with cells. It also can analyze monoclonal antibodies used in diagnosis and therapy for cancers, autoimmune diseases and against infectious agents.

UNMC chancellor Harold M. Maurer, M.D., credits Nebraska Governor Dave Heinemann, the Appropriations Committee, Senator Jim Jensen, Bob Bartee, Tom Rosenquist, and the Nebraska Legislature with enabling UNMC to acquire the BIAcore 3000.

To get a free consultation, contact Jodi Booth at 559-7708 or email at bbooth@unmc.edu.
Breast Cancer Vaccine Trial

UNMC researchers are conducting a unique vaccine trial for breast cancer patients with non-metastatic disease. Researchers believe giving the vaccine to patients at an earlier stage of cancer may produce a better chance of preventing a recurrence and cause regression of any remaining disease. The vaccine is made from the patient’s own dendritic cells.

Dendritic cells are found in all organs of the body. Their purpose is to grab antigens, or identifying proteins found on the surface of cells, and to wave antigens like red flags, as a signal to the immune system. The immune system’s T-cells recognize the antigens from viruses, bacteria and other organisms as foreign or “non-self,” this built-in detection system doesn’t work against cancer.

The new breast cancer vaccine, developed by Dr. Kenneth Cowan and James Talmadge, M.D., Ph.D., from UNMC and Dmitry Grabilovich, M.D., Ph.D., from the Moffitt Cancer Center in Florida, contains “modified” dendritic cells. The cells have been artificially “infected” with a gene called P53.

P53 is a well studied tumor-suppressor gene and is commonly referred to as the “guardian of the genome.” It protects normal cells from DNA damage following exposure to sunlight and carcinogens.

Patients whose tumors show a mutation of the P53 gene have a greater risk of cancer recurrence. The vaccine trial is only open to breast cancer patients who show a P53 mutation. The goal of the vaccine is to interrupt the cancer cycle sooner and create a better chance for a cure.

UNMC is seeking to enroll up to 50 breast cancer patients for this pilot study. The appropriate candidates for this breast cancer vaccine trial include:

- Only newly diagnosed patients. If a patient has had any prior treatment, she is not eligible.
- Patients must have tumor expression for the P53 gene mutation or accumulation.
- Patients cannot have distant metastatic disease.
- Patients must have four positive lymph nodes larger than 3 centimeters.

If you are interested in learning more about qualifying for this study call, 559-5582.

<table>
<thead>
<tr>
<th>Surgery (path)</th>
<th>Apheresis</th>
<th>AC</th>
<th>Taxol</th>
<th>DC p53 Vaccine Arm 1</th>
<th>Vaccines Arm 1</th>
<th>Vaccines Arm 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgery for stage II patients</td>
<td>DC p53 Vaccine Arm 2</td>
<td>DC p53 Vaccine Arm 1</td>
<td>DC p53 Vaccine Arm 2</td>
<td>DC p53 Vaccine Arm 1</td>
<td>DC p53 Vaccine Arm 2</td>
<td>DC p53 Vaccine Arm 1</td>
</tr>
<tr>
<td>DC p53 Vaccine Arm 2</td>
<td>DC p53 Vaccine Arm 1</td>
<td>DC p53 Vaccine Arm 2</td>
<td>DC p53 Vaccine Arm 1</td>
<td>DC p53 Vaccine Arm 2</td>
<td>DC p53 Vaccine Arm 1</td>
<td>DC p53 Vaccine Arm 2</td>
</tr>
</tbody>
</table>

Patient eligibility: Breast cancer patients with: T1 or T2, N1+≥4 nodes, or any T3, T4, or N2 – patients.

Blood sample obtained for immune function analysis at registration, just prior to each vaccine and 3, 6 and 12 months post irradiation.
Enzyme Improves Immunity, Suppresses HIV 1 Dementia

UNMC researchers have demonstrated for the first time that suppression of a particular enzyme in humans may increase immune responses against human immunodeficiency virus-1 (HIV-1), and thus decrease virus in the brain.

HIV-1 causes acquired immunodeficiency syndrome (AIDS). People with AIDS are at increased risk for developing certain cancers and for infections that usually occur only in individuals with a weak immune system. The hope is to ultimately design a new, more potent treatment for AIDS patients, as well as have broader applications in cancer and other immune disorders treatment.

“We think when calls of the immune system are infected with HIV-1, they produce toxins in the brain cells. This impairs brain cell function, and leads to HIV-associated dementia”, said senior author, Yuri Persidsky, M.D., Ph.D. “By suppressing IDO, we were able to see a decrease in the amount of HIV-1 in the brain.”

HIV dementia is a debilitating neurological disease that causes impaired intellectual functioning that interferes with normal activities and relationships.

The research team studied the effect of IDO in a mouse model developed by Dr. Persidsky and UNMC researchers Larisa Poluektova, M.D., and Howard Gendelman, M.D. The model reproduces features of HIV-q infections in the brain, internal organs and blood, and was able to demonstrate that specific anti-viral responses are significantly enhanced in animals treated with an IDO inhibitor.

Dr. Persidsky, is a senior author and his group are exploring an entirely new area of potential therapy by manipulating the immune system to help it better control the virus.
To Work and Dream of Science

Burak Aksu, M.D., PhD, Instructor and Researcher for the Department of Microbiology at Marmara University Medical School, in Istanbul, Turkey, has had a unique opportunity to come to UNMC through a fellowship program offered by the Association of Public Health Laboratories (APHL). His mentor, Professor Funda Babacan, M.D., had previously worked with Dr. Steven Hinrichs, and saw an excellent opportunity for one of her rising stars to come and work with the Nebraska Public Health Laboratory (NPHL). Dr. Aksu applied for the fellowship, but never imagined he would have the opportunity to come to the United States to “work and dream of science.” On February 23, 2005 that dream became a reality.

Since arriving last February, Dr. Aksu has experienced both the classroom and the laboratory side of microbiology and public health at UNMC. He has observed multiple classes at UNMC, and noted that they are more in depth than the classes he teaches in Turkey. “Instructors in Turkey must know and teach about many subjects instead of focusing on one subject like the classes here.” Because of this, he is trying to attend as many seminars and classes as he can at UNMC. This will enable him to take the knowledge he gains back to Turkey, and better serve his own students and university.

On both his classroom and public health work, Dr. Aksu’s primary mentor has been Paul Fey, Ph.D., Associate Professor of Pathology/Microbiology, and Associate Director of the NPHL. His work with Dr. Fey has focused on staphylococcal genetics/pathogenesis and antimicrobial resistance, as well as clinical microbiology and molecular epidemiology. This is particularly relevant to the work he does in Turkey, which centers around tuberculosis (TB). TB exhibits similar qualities to staphylococcus and is a major public health problem for Turkey.

Turkey has more incidents of TB than the United States, and drug resistance has become a major problem in its treatment. Resistance rates in Turkey are high because treatment approaches are often inappropriate, rates of treatment completion are low, and therapy is not directly observed. Despite a relatively stable number of new cases of TB each year, multidrug resistance is growing1. Dr. Aksu shared his concern regarding more cases crossing over the border from Russia into Turkey. Currently, Turkey does not have a public health network, which is a major impetus of his work with the NPHL. It is Dr. Aksu’s hope to form a collaboration with UNMC that would assist him in building Turkey’s public health infrastructure. When Dr. Aksu returns to Turkey in March 2006, his work will be less general than it was previously, and focus on major public health concerns such as TB and staphylococcus.

Footnote:

1 – “the Treatment of Multidrug Resistant Tuberculosis in Turkey”, Kemal Tahaoglu, MD, Tulay Torun, MD, Tulin Sevim, MD, Guliz Atac, MD, Altan Kir, MD, Levent Karasulu, MD, Ipek Ozmen, MD, and Nilufer Kapakli, MD

Pathology Residents Corner

The residency interview season is well underway for this year. We are pleased to have many outstanding applicants this year and look forward to meeting those who will visit us in the coming months. Twenty three interviews have already been scheduled. I want to extend a “thank you” to everyone in advance for your assistance with this important annual activity in the residency program. We will have many shoes to fill next July, as four of our trainees will graduate from the program.

We also await feedback from our ACGME site visit which should be coming in the next few weeks. The site visit last February seems like a very long time ago, but we look forward to seeing the evaluation and continuing our work to build and improve the program.

Shirene Seina

Congratulations to…

Fifth year resident Kurt Mathews received a 2005 ASCP Resident Council Subspecialty Pathology Grant. In August, Kurt did a rotation in Pulmonary pathology with Saul Suster, M.D., FASCP, at the Ohio State University Hospital in Columbus, Ohio.

Third year resident Shane Kohl presented at the 2005 annual ASCP meeting in Seattle, Washington. His poster was titled: Analysis of HER2/neu, Cox-2, EGFR, P53 and Ki67 in prostatic adenocarcinoma (PCa) using tissue microarray (TMA), Kohl S, Smith L, Wisecarver J, Hauke R, DiMaio D, Abrahams N. Shane also was a recipient of the AFIP Donald West King Fellowship Award for 2005 and did complete a Dermatopathology rotation in AFIP in July.

Third year resident Geoffrey Talmon has been appointed to the College of American Pathologists (CAP) Internet Editorial Board. In addition, Geoff, along with Dr. Abrahams, had a recent publication in the Archives of Pathology Lab Medicine, entitled “A Simple Schema for Evaluating Pathology-Related Web Sites and a Catalog of Sites Useful for Practicing Pathologists.” Arch Pathol Lab Med. 2005 Jun; 129 (6):742-6.
Dr. Neff Renowned Orthopedic Surgeon, Dies

On July 12, 2005, the medical center lost one of its most valued members, Dr. James R. Neff, Professor of Orthopedic Surgery, following a lengthy illness. For our department, the loss was personal and deeply felt. Jim’s wife, Dr. Julia A. Bridge, is a cherished member of the department; her loss and pain immediately became ours.

Over the years, Jim established a strong professional relationship with members (particularly the attending and resident surgical pathologists) of our department with whom he consistently shared meaningful interactions regarding the care of his surgical patients. It was no accident that he held a Courtesy appointment as Professor in our Department; in reality, he was one of us.

My first encounter with him was in 1993, shortly after my arrival at UNMC. He sent material from a bone lesion for a frozen section. The specimen was labeled: “Surgeon: James Neff, clinical diagnosis: chondrosarcoma, grade 2”. At the time, I had not met him. My first thought was: “Excuse me, chondrosarcoma, grade 2?” Yet, that’s exactly what the lesion turned out to be. My follow-up thought was: “This guy is good!” In time, this impression was repeatedly confirmed and I also came to appreciate that he was also a gentleman.

Jim Neff was the surgical pathologists’ surgeon. Working with him was consistently interesting, educational and a pleasure. He always was in complete possession of his faculties, even when he was seriously ill. A clinician and surgeon, he deeply understood pathology, its relevance and its limitations. Following completion of his musculoskeletal oncology fellowship, Jim elected to spend an additional year of training in pathology. He spoke our language and communicated clearly. His resection specimens were meticulously dissected and labeled. Every critical surgical margin was indicated clearly. His requests for frozen sections were reasonable. At such moments, he was a model of patience, because he understood that preparing and examining a histological frozen section of a bone or soft tissue tumor took time and sometimes required consultation and discussion with other surgical pathologists.

His clinical diagnoses were nearly always correct, for he was thoroughly grounded in the basics: clinical medicine, radiology and pathology; this was the foundation of his excellence. Based on the age and sex of the patient, the site of the lesion, the clinical presentations and the imaging studies, he knew what the pathology would reveal in most instances. As a surgeon, he was especially skilled and this was evident even to us, the surgical pathology staff.

Of his many interactions with our department, he contributed greatly to the training of several generations of pathology residents by exposing them to the rich body of biopsy and resection material stemming from his vast clinical practice. He was a magnet for patient referrals and our residents greatly benefited from this exposure, a fact they will appreciate in the years to come.

He contributed to the education of the surgical pathologists for the same reasons, as well as others. His example forced us to be thorough and to go beyond seeing solely the histologic sections by reviewing the clinical history, radiographic films and bone pathology textbooks. From personal experience, I know that he owned and inscribed a copy of Dorfman’s Textbook of bone tumors and consulted it frequently. In time, our reports reflected this influence, for we incorporated the relevant clinical information and imaging studies in the comment section of each surgical pathology report.

In Omaha, as in Kansas City, his investigative collaborations with Julie contributed greatly to the delineation of the cytogenetics and sometimes molecular aberrations of greater than 30 osseous and soft tissue neoplasms. As a sign of their generosity, many of these index papers bear the names of attending surgical pathologists and pathology residents as co-authors.

He served as the quintessential role model of the complete physician for all of us. He demonstrated that a surgeon could have a deep command of pathology and radiology. His clinical, diagnostic and surgical skills were matched by his gentle manners, refinement and compassion for his work and, above all for all his patients. He cared deeply for those who sought his skills and on a case-by-case basis, designed the best operative procedure to address the particular clinical problem.

In the closing months of his life, he was a study in equanimity”. He ennobled our profession, added no small measure of class and luster to our department and brought honor to our center.

My colleagues join me in expressing our appreciation for his many contributions to our professional education and growth. They and I extend our heartfelt condolences to his family.

Thomas A. Seemayer, M.D.

The Neff family has received thousands of letters from Dr. Neff’s patients as a testament of his loving care for each of them. The following (dated 11-4-05) is one beautiful example:

“Dear Dr. Bridge: On June 30th, 1978 I was rushed to K.U. Medical Center after being buried 13 feet underground. My right knee and ankle required surgery. My ankle had to be screwed together. By the greatest of luck I was operated on by Dr. James Neff. A year later when Dr. Neff removed the screw from my ankle, he told me I would probably be able to predict the weather and not be able to be as active as I once was. He also said I may be prone to arthritis in that leg. I am now 56 and just summated Kilimanjaro in Africa. I plan to do the other 6 summits of the world. Every day while hiking up Kilimanjaro, I would say “God Bless James Neff”. My companions finally asked why I would say this and I told them of my injuries and how thankful I have always been for the luck of the draw I had on getting Dr. James Neff. They suggested that I call him and that is what I did today, only to find I waited too long to say thank you. My condolences to you and your family. God Bless James Neff.”

Dewayne
Special Announcements

Babies:
- Bailey Alexis Bruss, 8-12-05, niece to Jamie Bass.
- Maxwell James Walter, 10-20-05, grandson to Dr. James Wisecarver.

Grants:
- Oluwatoyin Asojo, Ph.D. — Structural Basis of Novel Hookworm Vaccines – 7/1/05—6/30/07 — Awarded by: NIH - $73,500
- Oluwatoyin Asojo, Ph.D. — Structural Basis of Multidrug Resistance in Cancer – 6/1/05—5/31/10 – Awarded by: NIH - $115,344
- Nora Chapman, Ph.D. — Enterovirus Cardiac Persistence through defective Genomes – 7/1/05—6/30/2007 – Awarded by: American Heart Association - $143,000
- Paul Dunman, Ph.D. — Role of Staphylococcus Aureus Accessory Regulator SarA – 7/1/05—6/30/09 – Awarded by: American Heart Association - $260,000
- Steven Hinrichs, M.D. — Proteomic Approach to Identification of Proteins – 8/15/05—2/15/06 – Awarded by: Armed Forces Institute of Pathology - $190,000
- Steven Hinrichs, M.D. — Bioterrorism Lab Service Agreement – Focus Area C – 9/1/2005—9/30/06 – Awarded by: DHHS - $297,469
- Steven Hinrichs, M.D. — Bioterrorism Lab Service Agreement – Focus Area D – 9/1/2005—9/30/06 – Awarded by: DHHS - $617,783
- Tom Jerrells, Ph.D. — A Role for Viral Infection in Alcoholic Pancreatitis – 8/1/05—7/31/06 – Awarded by: DHHS/NIH/NIAAA - $147,000
- Tom Jerrells, Ph.D. — The Role of Immune Responses in Alcoholic Liver Diseases – 7/1/05—6/30/06 – Awarded by: DHHS/NIH/NIAAA - $294,000
- Yuri Persidsky, M.D., Ph.D. - RO1 PPAR-gamma-mediated neuroprotection against HIV-1 and alcohol CNS injury - 9/1/05 - 6/30/10 - Awarded by: NIH/NIAAA - $1,653,750.
- Jim Talmadge, Ph.D. — Depletion of T Cells and Dendritic Cells in Stem Cell Products - 7/1/05—6/30/06 – Awarded by: DHHS - $40,000

Upcoming Events:

Newsletter Team
Stephanie Kelly
Email: smkelly@unmc.edu
Phone: 559-7760

Kim Christian
Email: kachrist@unmc.edu
Phone: 559-7212

Jamie Bass
Email: jbass@unmc.edu
Phone: 552-3311

Continued article suggestions are appreciated!