CAPTURE Falls
Falls, Frailty and Geriatric Syndromes
March 13, 2012 10:00 – 11:00 a.m. CST

Jane F. Potter, MD
Harris Professor of Geriatric Medicine
Chief, Division of Geriatrics and Gerontology
Department of Internal Medicine
University of Nebraska Medical Center

Acknowledgement

This project is supported by grant number R18HS021429 from the Agency for Healthcare Research and Quality. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Agency for Healthcare Research and Quality.
Background: from 2010 baseline survey

<table>
<thead>
<tr>
<th>Hospital Size</th>
<th>Total Falls/1000 Pt Days</th>
<th>Injurious Falls/1000 Pt Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-CAHs (n=14)</td>
<td>4.2</td>
<td>0.9</td>
</tr>
<tr>
<td>CAHs (n=56)</td>
<td>6.3</td>
<td>1.8</td>
</tr>
</tbody>
</table>

- 55% of pts discharged from CAHs are ≥ 65 compared to 37% of all discharges
- Proportion of county population ≥ 65
 - Mean = 18.9% for 16 CAHs in project
 - Mean = 13.0% for 3 non-CAHs in project
- Greater prevalence of older adults in CAHs contributes to higher fall rates in CAHs as compared to non-CAHs

Objectives

- Identify frailty as a geriatric syndrome
- Explain relationship between frailty and fall risk
- Use established criteria to identify frail individuals
- Manage frailty and commonly associated syndromes to decrease fall risk
- Recognize how frailty may be integrated with existing fall risk reduction assessments
“a clinical condition in older persons that does not fit into a discrete disease category.” (Inouye et al, 2008)

What is a Geriatric Syndrome?

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Pathogenesis</th>
<th>Presenting Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease</td>
<td>KNOWN</td>
<td>KNOWN, but variable presentation</td>
</tr>
<tr>
<td>Geriatric Syndrome</td>
<td>Factor 1</td>
<td>Interacting</td>
</tr>
<tr>
<td></td>
<td>Factor 2</td>
<td>Interacting</td>
</tr>
<tr>
<td></td>
<td>Factor 3</td>
<td>Interacting</td>
</tr>
<tr>
<td></td>
<td>Factor 4</td>
<td>Interacting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single Manifestation</td>
</tr>
</tbody>
</table>
Geriatric Syndromes

Incontinence, cognitive or sensory impairment, dizziness, falls, frailty
- High impact on QOL
- Predict outcomes for patients
- There are many factors that contribute to these syndromes, some of which are treatable

Background: Frailty

High Prevalence
- 20–30% over 75 years
- 30% after 80 years
- Twice as common in women
- 28% of moderately-severely disabled women ≥65
Frailty: Predicts outcomes

- Falls, fractures
- Hospitalization
- Mortality
- Institutionalization

Frail older adults are at high risk from stressors such as extremes of heat/cold, acute infection, or injury.

As a group, frail older adults are more likely to:

- Have delayed recovery from illness and/or to fall
- Develop greater functional impairment, including becoming disabled or dependent
- Be hospitalized, with worse outcomes once hospitalized, including functional decline
- Die
Frailty is viewed as a distinct physiologic process, its clinical manifestations are seen in:

- Strength
- Balance
- Motor processing
- Nutrition
- Endurance
- Physical activity
- Mobility
- Cognition (possibly)

A phenotype has been developed and validated that links all but the last in this list.

Research has shown that this definition of frailty is consistent with that of a clinical syndrome that is primarily chronic and progressive.

- Early stages predict progression to more severe frailty
- But frailty can improve

- Early stages are likely most amenable to intervention
- Earliest presentations tend to be weakness, slowed walking speed, and/or decreased physical activity
Sarcopenia (loss of lean body mass) is a central component of frailty and a key predictor of the other clinical manifestations.

Predictors of sarcopenia and loss of strength with aging include:
- Anabolic factors such as testosterone and IGF-1
- Amount of physical activity
- Nutritional intake (e.g., protein, energy, vitamin D, and other micronutrients)
- Age itself

Objective 3

Learn how to identify frail patients

Many Definitions & Tools Have Been Proposed
Frailty = inactivity combined with:

- low energy intake
- weight loss
- low body mass index

- Gait speed alone & with chair stands, & tandem balance test
- Predicts 12-mo rates of hospitalization, ↓ health, and ↓ function
- Proposed: “vital signs” to screen older adults
Cardiovascular Health Study, 2001

- Frailty = a syndrome with a critical mass of signs and symptoms.

Three out of five:
- Slow walking speed
- Poor hand grip
- Exhaustion
- Weight loss
- Low energy expenditure

CHS FRAILTY Criteria
Study of Osteoporotic Fracture (SOF)

- CHS criteria are unrealistic for clinical use
- SOF tested simpler criteria in both men & women.
- **Exclusion** inability to walk without the assistance of another person
- CHS and SOF were concordant in 71%
- SOF is easily evaluated in a few minutes

<table>
<thead>
<tr>
<th></th>
<th>SOF</th>
<th>CHS ≥ 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrinking</td>
<td>Wt loss ≥ 5% over 3 years</td>
<td>Unintentional wt loss >10 lb in last year</td>
</tr>
<tr>
<td>Weakness</td>
<td>Unable to do 5 chair stands</td>
<td>Grip strength in lowest quartile</td>
</tr>
<tr>
<td>Poor energy</td>
<td>“Do you feel full of energy”= no</td>
<td>“Do you feel full of energy”= no</td>
</tr>
<tr>
<td>Slowness</td>
<td></td>
<td>Walking speed in lowest quartile</td>
</tr>
<tr>
<td>Low physical activity</td>
<td></td>
<td>Physical Activity Scale for the Elderly</td>
</tr>
</tbody>
</table>
Study of Osteoporotic Fracture (SOF) Criteria for Frailty

<table>
<thead>
<tr>
<th>Frailty Criteria</th>
<th>Data Collection</th>
<th>Score</th>
</tr>
</thead>
</table>
| Weight loss $\geq 5\%$ over 3 yrs | Weight 3 years ago
Weight today
Change in weight/
Weight 3 years ago $=$ % loss | Score=1 if weight loss $\geq 5\%$
Otherwise, Score=0 |
| Inability to do 5 chair stands | Sit in chair, do not use arms, rise 5 times | Score=1, if unable
Otherwise, Score=0 |
| “Do you feel full of energy?” | Ask the question, must answer yes or no | Score=1, if no
Otherwise, Score=0 |

If summed score is 2 or 3, patient is frail;
If score is 1 patient is prefrail;
If score=0 the patient is robust

Objective 4

Manage frailty and commonly associated geriatric syndromes to decrease fall risk
The focus of care should be to:

- **Exclude any modifiable precipitating causes of frailty**, including causes that are treatable or environmental
- **Improve the core manifestations of frailty**, especially physical activity, strength, exercise tolerance, and nutrition
- **Minimize the consequences of vulnerability**, whether in terms of **environmental risks**, risks from low social support, or risks from stressors such as acute illness or injury, hospitalization, or surgery

The approaches that older adults use to adapt to age-related losses can also be applied to frailty:

- **Carefully choose goals**
- **Optimize the abilities needed to reach these goals**
- **Compensate for diminished competencies by increased reliance on other functions or by replacement**

Clinical management needs to include these approaches for frail older adults, as well as more standard medical care.
Interventions for Sarcopenia

Randomized, placebo-controlled trial
progressive resistance exercise training,
multinutrient supplement, both,
and neither in 100 frail NH residents over 10-wks
Nursing Home (NH) Residents

Outcomes for Resistance Training

NH Residents, Age ≈ 87 yrs
Resistance training:

- ↑muscle strength >100%
- ↑LE muscle size 3%
- ↑gait velocity 12%
- ↑mobility
- ↑spontaneous activity
Recommendation:

Frail patients need* referrals to dietary and physical therapy

* If consistent with goals
Sarcopenia and Hip Fracture Study:

- 5-yr prospective cohort study admitted to hospitals for hip fracture.
- 193 participants enrolled
- 71% were sarcopenic, 58% undernourished, and 55% vitamin D deficient.
- Poorer nutrition & walking endurance, greater pre-fracture disability and inactivity predicted ↑ length of hospital stay

Recommendation:

Screen Frail patients for Vitamin D deficiency and treat
Frail patients

- **Intervention**: 6 mo home-based PT to improve function, balance, muscle strength, transfers and mobility vs control education program.
- **Outcome**: change in function score at 3, 7 & 12 months. Intervention significantly slowed functional decline
Exercise Reducing Disability

Systematic Review: What works?
- **Multicomponent**: endurance, flexibility, balance, strength
- **Duration**: 3, 9, 12 mos.
- **Intensity**: 2-3 supervised/week, with/without daily home program

www.biomedcentral.com/1472-6963/8/278

Recommendation:

Frail patients should be discharged with home physical therapy *

* When D/C from home PT, ongoing exercise is critical
Symptom relief
Set patient centered goals
Family & caregiver support

Exercise Interventions
CGA, GEM, PACE, ACE

Hospice, comfort & dignity

INCREASINGLY FRAIL

STRATEGIES FOR MANAGING FRAILTY

- Comprehensive geriatric assessment and management is designed to optimize outcomes for frail older adults, particularly to prevent loss of independence
 - This team-based approach has positive effects on polypharmacy, falls, functional status, nursing-home admission, and mortality
Interventions: Assessment

- Medication evaluation with focus on simplification, medication debridement
- Diagnosis and management of cognitive impairment
- Diagnosis and treatment of other geriatric syndromes.

Syndromes Overlap

treatment for one is treatment for the others

- Frailty
- Falls
- Dizziness
- Bladder Dysfunction (UI)
- Sensory Impairment
- Cognitive Impairment
Cognitive Impairment

- Is common: up to 50% of people 85 years and older affected.
- Is easily and quickly detected
- Changes how we treat patients

Detection: the Mini Cog

- 3 item recall
- “I am going to give you 3 things to remember, I want you to repeat those after me and remember them, because I’ll ask you to repeat them in a few minutes. Ready: apple, table, penny”
- Clock drawing
- “Now, I want you to draw a circle and make the face of a clock with the hands set at 10 minutes after 11.”
Recommendation:

If the patient fails Mini Cog do not rely on the patient’s memory when developing your treatment plan.
Bladder dysfunction

- Urgency with/without incontinence.
- History: what is the usual voiding pattern? Has there been a change with this illness/hospital stay?
- A change should prompt evaluation for infection, retention, post-catheter urethritis.

Evaluation for Change in Bladder Function

- UA, if positive C&S
- Post voiding residual urine, further evaluation if over 200
- Check for constipation/fecal impaction
- If recent history of indwelling foley, and UA is negative for infection, treat for presumed post catheter urethritis with topical vaginal estrogen
Chronic Urgency/Frequency: Adapt the environment

- Bedside commode and OT or PT to work on safe transfers
- Protective garment and reassurance
- Bedside sitter
- Family at bedside

Chronic Urgency/Frequency

- May respond to bladder training:
 - frequent voluntary voiding to keep bladder volume low
 - urgency suppression using CNS and pelvic mechanisms
- May respond to antimuscarinic agents
 - oxybutynin, tolterodine, fesoterodine, trosiprium, darifenacin, and solifenacin
 - increase bladder capacity
Promoted toileting for Frail or Cognitively impaired

- Monitor and encourage patient to report any need to void
- Prompt patient to toilet every 2–3 hours during the day; lead patient to the bathroom, and gives the patient positive feedback when he/she toilets.
- Patients most likely to improve void ≤4 times during the day (12 hours) and are able to accept and follow the prompt to toilet at least 75% of the time in an initial 3-day trial

Objective 5

Integrating frailty into fall risk reduction
How Fall Risk Links with Frailty

<table>
<thead>
<tr>
<th>Tool</th>
<th>Age</th>
<th>Mobility Subjective</th>
<th>Mobility Objective</th>
<th>Sensory Impairment</th>
<th>Cognition</th>
<th>Elimination</th>
<th>Prior Fall History</th>
<th>Meds</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRASS</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hendrichs II</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morse</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schmid</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

How Fall Risk Links with Frailty

<table>
<thead>
<tr>
<th>Tool</th>
<th>Dizziness</th>
<th>Vertigo</th>
<th>Male Gender</th>
<th>Secondary Diagnosis</th>
<th>IV/Heparin Lock</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRASS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hendrichs II</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Schmid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Summary

- Frail people have 2 or more of the following:
 - weight loss,
 - fatigue,
 - inability to do 5 chair stands
- Falls and fractures are important outcomes of untreated frailty

Summary (2)

- Managing frailty and associated geriatric syndromes is key to fall risk reduction.
- Not everything contributing to falls and frailty will be modifiable; BUT WE TREAT THE TREATABLE.
- Because frailty is linked to other geriatric syndromes, they share common risk factors, and treatment of one often improves some of the others.
Summary (3)

- **Global Considerations:**
 - Carefully set goals
 - Optimize abilities to achieve those goals
 - Compensate for diminished competencies often by replacement (e.g. environmental modification).

Summary (4)

- **Specific Considerations:**
 - Improve mobility with long-term exercise
 - Improve nutrition
 - Replace Vitamin D
 - Screen for/manage cognitive disorders, bladder dysfunction, dizziness, and sensory impairment.
Questions?
Thank You

Please complete the course evaluation located at the link below:

https://www.research.net/s/capturefalls-eval4

We value your input!
Upcoming Events

<table>
<thead>
<tr>
<th>Date (Time 10 – 11 am CST)</th>
<th>Event</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monthly Call March 26, 2013</td>
<td>Review of Fall Event Reports and Communication Between Hospitals</td>
<td>Katherine Jones, PT, PhD</td>
</tr>
<tr>
<td>Webinar April 2, 2013</td>
<td>Webinar: Best Practices in Conducting Effective Meetings to Support Fall Risk Reduction</td>
<td>Victoria Kennel, MA</td>
</tr>
<tr>
<td>Webinar May 14, 2013</td>
<td>Best Practices in Teamwork to Support Fall Risk Reduction</td>
<td>Katherine Jones, PT, PhD</td>
</tr>
<tr>
<td>Webinar June 11, 2013</td>
<td>Best Practices in Using Data to Reduce Fall Risk</td>
<td>Katherine Jones, PT, PhD</td>
</tr>
<tr>
<td>Webinar July 9, 2013</td>
<td>Best Practices in Mobility Assessment to Reduce Fall Risk</td>
<td>Dawn Venema, PT, PhD</td>
</tr>
<tr>
<td>Webinar August 20, 2013</td>
<td>Best Practices in Mobility Interventions to Reduce Fall Risk</td>
<td>Dawn Venema, PT, PhD</td>
</tr>
</tbody>
</table>

CAPTURE

Collaboration and Proactive Teamwork Used to Reduce Falls