The NIEHS Superfund Research Program: Research Highlights on Drought-Associated Environmental Exposures

Danielle J. Carlin, PhD, DABT
Health Scientist Administrator, Superfund Research Program
Division of Extramural Research and Training
National Institute of Environmental Health Sciences
NIEHS Superfund Research Program (SRP)

- **Mission**: Provide practical science to solutions to protect human health
- NIH peer-reviewed, competitively awarded grants to universities and small businesses
- **Unique team-science approach**
 - Brings together diverse disciplines: health researchers, engineers, biologists, ecologists, earth scientists, and social scientists
 - Aims to understand & reduce exposure to potentially harmful contaminants and improve health
- Works closely with industry, government, tribal, and business partners to deliver practical solutions
SRP is Part of the National Institutes of Health

• The NIH Research Mission is to seek fundamental knowledge about living systems to enhance health, lengthen life, and reduce illness and disability.

• NIEHS focuses on understanding how the environment affects people in order to promote healthier lives.

• SRP grantees use unique solution-oriented approaches to address complex environmental health problems. They study environmental contaminants to lower cleanup costs, reduce exposures, and improve health.

• SRP's central goal is to understand and break the link between chemical exposure and disease.
SRP Grantee Research is Relevant to Droughts

- **University of Arizona**: Addressing contamination concerns in the arid U.S. Southwest
- **University of New Mexico**: Toxic effects of mixed metals and uranium exposure on tribal communities in the Southwest
- **UC Berkeley**: Developing new technologies for water-stressed regions
- **UC San Diego and Dartmouth**: Identifying plant genes and proteins linked to drought resistance
- **UC Davis**: Assessing health effects of wildfires
- **Texas A&M**: Tools and models for addressing exposures to mixtures during extreme events
The University of Arizona – Health & Environmental Impacts of Metal Mining

Project: Revegetation of Mining Wastes in Arid and Semiarid Environments: Plant-Microbe-Metal Interactions and Fertility Island Effects
Project Leader: Raina M. Maier

Project: Toxicological Impact of Mine Tailings Dust on Lung Epithelial Barrier Function
Project Leader: Robert Clark Lantz

Project: Prediction and Properties of Airborne Dust Arising from Mining Sites
Project Leader: A. Eduardo Saez

Project: Role of NRF2 in the Pulmonary Response to Inhaled Mine Tailing Dust
Project Leader: Donna D. Zhang

Community Engagement Core
Project Leader: Karletta Chief
Location: Arizona and Northern New Mexico
Communities: Native American
Selected Findings – Fate & Cleanup of Metal Mining

University of Arizona

- **Health Effects**: Early life inhalation exposure to mine waste dust affects lung development in mice. Early life exposure leads to adult disease.

- **Bioaccessibility**: Geochemical weathering increases lead bioaccessibility in semi-arid mine waste. Identified types of lead present in weathered mine waste that correspond to increased risk of human exposure.

- **Phytostabilization**: Reducing wind-blown dust using drought-resistant plants.
Sustainable Solutions – Phytostabilization of Mine Waste

University of Arizona

- **Innovation:** Revegetation strategy “compost-assisted phytostabilization” to stabilize arsenic and lead in soils and prevent dispersion via wind in semi-arid and arid regions.

- **Status:** Field study at Iron King Superfund site in Dewey-Humboldt, AZ. Currently working with major mining companies to improve mine waste remediation practices.

The University of New Mexico: Abandoned Uranium Mines & Indigenous Peoples

Project: Immobilization of U, As, and Co-occurring Metals in Mine Wastes
Project Leader: Jose Manuel Cerrato

Project: Mechanisms of Immune Dysregulation Produced by Uranium, Arsenic and Metal Mixtures
Project Leader: Scott W. Burchiel

Project: Modulation of Uranium and Arsenic Immune Dysregulation by Zinc
Project Leader: Debra MacKenzie

Project: Toxic Metals in Airborne Particulate Matter Originating from Abandoned Uranium Mine Sites
Project Leader: Melissa Gonzales

Community Engagement Core

Project Leader: David Begay
Locations: Arizona, New Mexico, Mexico
Communities: Laguna Pueblo tribe and two Navajo communities
Selected Finding – Toxicity of Mine Dust

University of New Mexico

• Found that particulate matter near uranium mine sites was enriched with uranium and vanadium.

• **Results:** Revealed that the dust from the mine led to increased pulmonary and cardiac toxicity in mice, and higher levels of inflammation and oxidative stress in human cells.

• **Status:** Researchers now analyzing how much dust is traveling to community members in the region and looking at health effects from inhalation exposure.

Water Scarcity & Chemical Contaminants

UC Berkeley

- **New Technology**: Method to clean up stormwater, underused potential drinking water source. Coated sand with two type of manganese → binds to herbicides, pesticides, and BPA, removing them from water

- **Alternative Methods**: Identifying barrier approaches for removing chemical contaminants for potable water reuse. Nanofiltration, ozonation/biological filtration, and activated carbon filtration might be alternatives for inland communities.

SRP Collaboration: Drought-Tolerant Plants

Dartmouth College, UC San Diego

Project: Arsenic Uptake, Transport and Storage in Plants
Project Leader: Mary Lou Guerinot, Dartmouth

Project: Molecular Mechanisms of Metal Detoxification and Engineering Accumulation in Plants
Project Leader: Julian Schroeder, UCSD

- Both projects are exploring the uptake and transport of toxic metals in plants, such as rice.
- Identifying transporters that can resist toxic metals but also how these transporters can increase salt and drought tolerance, control water loss, and expand energy storage.
Collaboration: Understanding How Plants Grow and Upload Nutrients

Dartmouth and UC San Diego SRP Centers

- Identified specific protein transporters that can improve the uptake of water and nutrients in acidic soil.
- Using these protein transporters in breeding research could lead to improved salt and drought tolerance of crops.
- Implications for increasing food production with limited land and water resources.

Infrastructure to Respond to Disasters: Assessing Wildfire Risks

University of California, Davis

• SRP Center researchers conducted non-targeted analysis on ash samples after 2017 Northern California wildfires.

• Over 2,300 nontarget compounds were detected in samples from neighborhoods destroyed by the fires that were not present upwind of the fires.

• A majority of compounds require further identification and are being analyzed.
Texas A&M: Redistribution of Contaminants during Natural & Manmade Environmental Disasters

Project: Dynamic Exposure Pathways Under Conditions of Environmental Emergencies
Project Leader: Anthony Knap

Project: Mitigation of Chemical and Mixture Effects Through Broad-Acting Sorbents
Project Leader: Timothy D. Phillips

Project: Inter-Tissue and –Individual Variability in Response to Mixtures
Project Leader: Ivan Rusyn

Project: Single Cell, Multi-Parametric High Throughput Platform to Classify Endocrine Disruptor Potential of Chemicals
Project Leader: Michael A. Mancini (Baylor)
Thank You!

Acknowledgements:

NIEHS Hazardous Substance Research Branch
Michelle Heacock David Balshaw
Heather Henry Bill Suk
Brittany Trottier

MDB Inc.
Abigail Brewer
Sara Amolegbe

Danielle Carlin
984-287-3244
danielle.carlin@nih.gov

www.niehs.nih.gov/srp