

Single-Molecule Localization Microscopy: Theoretical Basis and Practical Guide

"Widening the Lens" Microscopy Education program Vanderbilt University, Nashville, TN, USA

Ulrike Boehm, Ph.D.

ulrike.boehm@zeiss.com - @ulrike_boehm Corporate Research & Technology (CRT), Carl Zeiss AG

Diffraction Limited vs. Diffraction Unlimited

Microtubules, scale bar: 1 um

The Diffraction Limit

Point Spread Function (PSF)

Circumventing the diffraction limit with...

Major discoveries enabled by SMLM

a Nucleosome clutches

b Nuclear pore complexes

Major discoveries enabled by SMLM

Overview

- Basic principles 2D SMLM
- Hardware for SMLM
- Practical considerations: sample preparation, suitable dyes, linkage errors, and buffers
- Processing, quantification, and interpretation of SMLM data
- 3D SMLM
- Summary
- Extra: New directions in SMLM
- Extra: SRM as a multidimensional challenge

Basic principles of 2D SMLM

What is Single Molecule Localization Microscopy (SMLM)?

Widefield image

Sequence of widefield images

Accumulated localizations

Superresolution image

What is Single Molecule Localization Microscopy (SMLM)?

Betzig et al. Science (2006), Hess et al. Biophy. J. (2006), Rust et al. Nature Methods (2006)

 $t_1 < t_2 < t_3$

10

What is Single Molecule Localization Microscopy (SMLM)?

- In SMLM small subsets of individual emitters are randomly activated or switched ON/OFF in consecutive acquisitions.
- If sparse enough to be identified as single molecule switching events, signals become spatiotemporally separated and are collected over several thousands of camera frames.
- Raw data are computationally processed to detect single molecules and determine their center positions with nanometer precision dependent on the number of photons detected per individual emitter.
- These are finally assembled through superimposition into a single-plane image.

Overview

- Basic principles 2D SMLM
- Hardware for SMLM
- Practical considerations: sample preparation, suitable dyes, and buffers
- Processing, quantification, and interpretation of SMLM data
- 3D SMLM
- Summary
- Extra: New directions in SMLM
- Extra: SRM as a multidimensional challenge

Wide-field

TIRF

Java Tutorial: Evanescent Field Penetration Depth 14

Schermelleh et al. Nature Cell Biology (2019)

- Wide-field or TIRF with high NA objectives (15k-20k)
- High power lasers (~25k)
- Sensitive EMCCD (~35k) or sCMOS (~16k) cameras
- Additional optics for 3D information

System upgrade: ~\$80,000

	attificreports
	www.nature.com/scientific
	RTS
_	VITIEIC REP
CCIE	
3012	factive setup
	the simple and cost-effective
OPEN	A simple arresolution localized
	for supervice
	microscopy
2017	Hongqiang Ma@1, Rao Fu ^{se} , June (Hongqiang Ma@1, Rao Fu ^{se} , June (SMLM) has become a powertow of laboratories and and the second sec
Received: 23 January 2017 Accepted: 30 March 2017	Single molecule localization in imaging to the standard s
Published online: 08 May 2	high cost. Here, we cost alternatives and a biological expension and spatial resolution compared to the cost. Our low cost appropriate low-cost alternatives and the cost of the cost of the cost. Our low cost in the calization precision and spatial resolution compared by the cost. Our low cost is the calization precision and spatial resolution compared by the cost. Our low cost is the calization of the cost of the cost of the cost of the cost of the cost. Our low cost is the calization of the cost of
	setup. In setup can yield similar of the art componency microscope when a setup of the setup can yield similar of the art componency microscope when a setup setup as a routine laboratory microscope when a setup
	SMLM setup can potentiating SMLM setup can potentiating resolution imaging capability- resolution imaging capability- terrificantly expanded our ability to study biological pro- terrificantly expanded our ability to study biological pro- section of the study of the study biological pro- terrificantly expanded our ability to study biological pro- terrificant pro- terrificant pro- terrificant pro- section of the study biological pro- terrificant pro- terr
1	the past few decades, fluorescence microscopy has summing the diffraction-minuted on the light the receiver of the diffraction minuted on the light the receiver of the diffraction minuted in the second of the second second on the minuted structures smaller than ~200 nm. Until the receiver of the second of the
1	in the P at the cellular and above or visualize provoges have been developed to the technique share cesses at the cellular and above or visualize provoges have been developed to the technique have fluorescence microscopy cannot be divided into two categories: the technique haved fluorescence resolution imaging techniques have been defined in (VSF) using modulated light, including second fluorescence (SM). ³ and the technique have divided and divided a
1	a number of super-resolution techniques (can generate the point spream microscopy - Consequence) photo action Markov super-resolution techniques (can generate the structured illumination microscopy - ((d) STORM)-(-7, Theie effects of the fluorescence that sharpens the structured illumination microscopy - ((d) STORM)-(-7, Theie action of the fluorescence that sharpens the structured illumination microscopy - ((d) STORM)-(-7, the structure action of the structured in the structured in the structure action of the structure acti
1	ulated emission depretive excited single number stochastic optical record on approximate- ulated emission of sparsely excited single number stochastic optical record on approximate- on localizescore ([] PALM] ⁴⁵ and (direct) stochastic optical record on approximate- cord optical record optical record optical record optical record optical and a common labora- cord optical record optical record optical record optical record optical record optical and a common labora- tion optical record optical record optical record optical record optical record optical record optical record optical record optical re
	tion microscopy of the second se
	to 20 nm with resurch. The second sec
	remains on participation into a second processing of the second participation of the s
	The key technical portion of spore and activate only a small portion of spore and activate only a small portion of spore and spore and activate the best person of the store lens to efficiently collect the limited number of the limit of the spore activate of the spore activate store the spore activate activate the spore activate activate the spore activate activate activate activate spore activate only a spore activate activate activation activate ac
	objection with high quantum of the time of the second seco
	common being high-end objective and option of the most expensive items), the most expensive items of the stability of the laser output and single-mode laser, high-end cost to exceed \$100,000. The most expensive items is the stability of the laser output and sub-drive the total cost to exceed \$100,000. The shown a decent performance in SMLMC. Unlike the objective lens and the stability of the source (one of the most expensive items) are stability of the laser output and the stability of the source of the stability of the stability of the objective lens and the stability of the source of the stability of the
	To lower the control grade laser, which has the shift days of the scientific grade laser. The second
	the imagine
	A Ontical Imaging Laboratory, Departments of Maclumeria, Notheast Electric Power Onter and requests to the second Chemical Engineering, Notheast Electric Power Onter and requests to the second Chemical Engineering, Notheast Electric Power Onter and requests to the second Chemical Engineering, Notheast Electric Power Onter and requests to the second Chemical Engineering, Notheast Electric Power Onter and Requests to the second Chemical Engineering, Notheast Electric Power Onter and Requests to the second Chemical Engineering, Notheast Electric Power Onter and Requests to the second Chemical Engineering, Notheast Electric Power Onter and Requests to the second Chemical Engineering, Notheast Electric Power Onter and Requests to the second Chemical Engineering, Notheast Electric Power Onter and Requests to the second Chemical Engineering, Notheast Electric Power Onter and Requests to the second Chemical Engineering, Notheast Electric Power Onter and Requests to the second Chemical Engineering, Notheast Electric Power Onter and Requests to the second Chemical Engineering, Notheast Electric Power Onter and Requests to the second Chemical Engineering, Notheast Electric Power Onter and Requests to the second Chemical Engineering, Notheast Electric Power Onter and Requests to the second Chemical Engineering, Notheast Electric Power Onter and Requests to the second Chemical Engineering, Notheast Electric Power Onter and Requests to the second Chemical Engineering, Notheast Electric Power Onter and Requests to the second Chemical Engineering, Notheast Electric Power Onter and Requests to the second Chemical Engineering, Notheast Electric Power Onter and Requests to the second Chemical Engineering, Notheast Electric Power Onter and Requests to the second Chemical Engineering, Notheast Electric Power Onter and Requests to the second Chemical Engineering, Notheast Electric Power Onter and Requests to the second Chemical Engineering, Notheast Electric Power Onter and Requests to the second Chemical Engineering, Notheast Elect
	Biomedical and CH13, USA. College or Pittsburgh, PA, 1521, USA. College or Pittsburgh, PA, 1521, USA. College of the transmission of t
	materials should be addressed
-	200 85 PORTS [7: 1542 [DOI:10.1038/41598-017-01609-0
SCIEN	In the second

Total cost: \$4,100.00

Overview

- Basic principles 2D SMLM
- Hardware for SMLM
- Practical considerations: sample preparation, suitable dyes, linkage errors, and buffers
- Processing, quantification, and interpretation of SMLM data
- 3D SMLM
- Summary
- Extra: New directions in SMLM
- Extra: SRM as a multidimensional challenge

Practical considerations: sample preparation, suitable dyes, linkage errors, and buffers

Photoswitching – ON/OFF switching

Photoswitching – ON/OFF switching

Conventional dyes

Typical SMLM dyes

Temporal separation not possible "Da

"Dark" state allows temporal separation for SMLM

A good SMLM dye has...

Long ON-time to allow the collection of many photons, but not too long such that the data acquisition is slowed down.

Complete dark OFF-state that is long enough to prevent too many fluorophores from being ON simultaneously.

High absorption coefficient and quantum yield to produce bright events.

Exceptional resistance to bleaching since tens of thousands of images are collected at high laser power.

Bleaching, brightness, ON-time, and ON/OFF duty cycle are all strongly affected by laser power and buffer composition.

Photoswitchable Fluorescent Proteins

Photoactivation by decarboxylation (PA-GFP, PA-mKate, PA-mCherry)

Photoswitching by beta-elimination (Dendra, mEos, mClavGR2, mIrisFP, mMaple)

Photoswitchable Fluorescent Proteins

Photoconversion by hydration/dehydration (Dreiklang)

Dreiklang

Photoswitchable Fluorescent Proteins

Name	$ \begin{array}{c} \lambda_{\text{ex}} \\ \lambda_{\text{em}} \end{array} \begin{array}{c} h\nu \\ \hline \\ \lambda_{\text{em}} \end{array} \begin{array}{c} \lambda_{\text{ex}} \\ \hline \\ \lambda_{\text{em}} \end{array} \end{array} $	ε×10⁴ (M⁻¹cm⁻¹)	Φ	Fon/Foff	<i>t</i> ₁/₂M ^ь (min)	t _{1/2} on ^c (s)	t _{1/2} PB ^c (s)	N	σ (nm)
Photoactivatab	le								
PA-GFP		1.74	0.79	60	<10	1.8	150	313 (x̄)	41 (x)
PAmCherry1		1.80	0.46	4000	23	2.5	100	724 (x̄) 413 (M)	18 (x̄) 17 (M)
PATagRFP		6.60	0.38	550	75	4.5	180	251-906 (x̄) 150 (M)	39 (x̄) 31 (M)
PAmKate		2.50	0.18	100	19	6.3	350	NR	15 (x̄)
Photoswitchab	le								
PS-CFP2	405 468 468 405 488 511	4.30; 4.70	0.20; 0.23	1000	NR	NR	NR	262–930 (x̄) 250 (M)	29 (x̄) 27 (M)
Dendra2	488 507 488 573 507	4.50; 3.50	0.50; 0.55	300	90	NR	260; 2420	131–686 (x)	23 (x̄)
mEos3.2	488 516 516 580	6.34; 3.22	0.84; 0.55	NR	20	NR	13; 48	482-809 (x̄) 264 (M)	12 (x̄) 10 (M)
mClavGR2	488 504 405 561 583	1.90; 3.20	0.77; 0.53	200	27	NR	233; 3644	379 (x)	<30(x̄)
mMaple3	488 505 505 505 583	1.50; 0.74	3.0; 0.56	400	49	NR	9.4;133	675 (x)	NR
PSmOrange	561 565 640 662	11.3; 3.3	0.51; 0.28	550	96	NR	15; 49	337 (x)	45 (x)

Name	$ \begin{array}{c} \lambda_{ex} \\ \lambda_{em} \\ \hline hv \\ \hline hv \\ \hline hv \\ \hline \lambda_{em} \end{array} $	<i>ɛ</i> × 10⁴ (M⁻¹cm⁻¹)	FR	Φ	For/Foff	<i>t</i> _{1/2} Μ ^b (min)	<i>t</i> _{1/2} on ^c (s)	t _{1/2} off ^c (s)	t _{1/2} PB ^c (s)	N	σ (nm)
Photochromic											
bsDronpa		4.5	100	0.50	20	NR	0.04	1.25	12.5	560 (x̄)	<45(x̄)
rsEGFP		4.7	1200	0.36	65	120	0.00002	0.001	800	<60 (x̄)	70 (x)
Skylan-S		15.2	7000	0.64	26	NR	0.073	4.77	NR	NR	20 (x̄)
mGeos-M		5.2	8	0.85	20	<10	NR	21.03	20	458 (x̄) 387 (M)	14 (x̄) 12 (M)
Dronpa		9.5	4	0.85	20	25	0.12	115	2	299 (x̄) 269 (M)	17(x̄) 15 (M)
rsFastlime		4.6	35	0.60	65	NR	0.03	2.60	65	<60 (x̄)	40 (x̄)
Padron		4.3	15	0.64	140	NR	5.6	0.06	40	NR	NR
Drieklang	515 529 365	8.3	160	0.41	20	120	1	3	21	720 (x̄)	15 (x)
rsTagRFP	561 585 445	3.7	75	0.11	20	43	0.0028	0.18	NR	NR	NR
rsCherry		8.0	50	0.02	10	NR	3.0	0.05	NR	359 (x̄) 288 (M)	24 (x̄) 22 (M)
rsCherryRev		8.4	400	0.005	10	42	0.05	0.7	NR	401 (x̄) 264 (M)	25 (x̄) 23 (M)

Photoswitchable Dyes

Conventional fluorophores (Alexa Fluor 488, Cy5, Cy3)

Photoswitchable Dyes

Spontaneously blinking (HM-SiR)

Hydroxymethyl Rhodamines

HM-SiR

Photochromic rhodamines

Photoswitchable Dyes

Name	$ \begin{array}{c} \hline \lambda_{ex} \\ \hline \lambda_{em} \\ \hline hv \\ \hline hv \\ \hline \lambda_{em} \\ \hline \end{array} \\ \begin{array}{c} \lambda_{ex} \\ \hline \lambda_{ex} \\ \hline \lambda_{em} \\ \hline \end{array} \\ \end{array} $	<i>ε</i> × 10 ⁴ (M ^{−1} cm ^{−1})	Φ	<i>t</i> _{1/2} 0 (s)	n)	t _{1/2} off (s)	N	σ (nm)
Activator-reporter pairs								
Су3-Су5	532 640 670	25	0.28	1.0)	1.0	3000 (x̄)	NR
Name	$ \begin{array}{c} \hline \lambda_{ex} \\ \hline \lambda_{em} \\ \hline hv \\ \hline hv \\ \hline \end{array} \begin{array}{c} \lambda_{ex} \\ \hline \lambda_{em} \\ \hline \lambda_{em} \\ \hline \end{array} \end{array} $	<i>ɛ</i> × 10⁴ (M⁻¹cm⁻¹)	Φ	<i>on/off</i> × 10 ⁻⁵	SC	SF	N ^b	σ (nm)
Activator free								
ATTO 488		9	0.80	220	49	0.99	1110 (x)	29
СуЗВ		13	0.67	40	5	0.89	2057 (x̄)	22
Alexa Fluor 647		24	0.33	120	26	0.73	5202 (x̄)	17
DyLight750		22	NR	20	6	0.58	749 (x)	30

Name	$\overbrace{\lambda_{ex}}{hv} \xrightarrow{hv} \overbrace{\lambda_{ex}}{h_{em}}$	<i>ε</i> × 10⁴ (M⁻¹cm⁻¹)	Φ	<i>on/off</i> × 10 ^{−5}	$arPhi_{PA}$	N	σ (nm)
Photoactivatable	e/Caged						
Rhodol-NN		9	0.3	NR	0.16	NR	36
PA-JF ₅₄₉		9	0.78	10	0.022	637 (x)	14
PA-JF ₆₄₆		12	0.47	0.16	NR	760 (x)	21
N ₃ -DCDHF		5	0.03-0.4°	NR	0.095	1100 (x̄)	18
NVOC ₂ -Rhq		9.9	0.83	NR		540 (x)	NR
NVOC ₂ -Rh ₁₁₀		7.6	0.88 ^d	NR	0.0012	3488 (x)	16
NVOC2-OG		8.2	0.97	NR	0.0013	235 (x)	NR
$NVOC_2$ -SiRh _Q		8	0.38	NR		14944 (x̄)	5
Photochromic							
OA-2		8	0.09	NR	0.02	600 (x̄)	70
Rh phthalimide		10	0.31	NR	NR	900 (x)	55
Rh _B stilbene		10	0.31	NR	0.009	3800 (x̄)	13-17
DAE-sulfone		5.4	0.34	NR	0.0065	200–350 (x̄)	70
Spontanuously b	blinking						
HMSiR		10	0.39	NR	NR	2600 (x̄)	52

Current Approaches in SMLM

They differ primarily in how ON/OFF switching is achieved:

(f)PALM – photoactivation

STORM – photoswitching of activator and reporter dye-pair

dSTORM – conventional fluorescent probes in the presence of thiols transfer dyes to a long-lived OFF state

(f)BALM – binding and fluorescence activation of specific dyes

DNA-PAINT/Exchange-PAINT – transient oligonucleotide hybridization

Betzig et al. Science (2006), Hess et al. Biophy. J. (2006), Rust et al. Nature Methods. (2006), Heilemann et al. Angew Chem Int Ed Engl. (2008), Schoen et al. (2011), Szczurek et al. Nucleic Acids Res. (2017), Jungmann et al. Nano Lett. (2010), Jungmann et al. Nat. Methods (2010), Jungmann et al. Nat. Methods (2014)

Linkage errors of various fluorescent labelling approaches

Different dyes blink optimally in different imaging buffers. Therefore, the acquisition of good quality 2- and 3-color images can be challenging.

Average photon counts per molecule in different buffers

of photons emitted before photobleaching. Such issues include those of the parent Cv5 compound, aside from modest shifts in

ntum yield (Supplementary Fig. 2a.b). The qua

rsible (photobleaching) light-

h transient (blinking) and irreve

ELSEVIER	journa	Journal of Bostechnology 140 (2011) 2015-2016 Contents links available at Science/Direct Journal of Biotechnology I homepage: www.elsevier.com/locate/jbiotec		
The effect of p fluorescence i Sebastian van de l * Mastechnetege and Biophysics * Applied Laser Physics and Las	hotoswitchi maging Linde ² , Steve W , Mius-Maximilians-Unive er Spectroscopy and Bielefe	ng kinetics and labeling densities on super- olter ⁴ , Mike Heilemann ^{b,4} , Markus Sauer ^{4,4} un Wakarg, In Malkus 2004 Working, Jammy U Mannah Jr Buphysis an Imaceus, Beldy Dimensi, Discontinuenza 21, 1215 Ib	resolution	
A R T I C L E I N F Article history: Received 4 November 2009 Received in revised form 10 F Accepted 15 February 2010	0	. B S T R A C T		MINIREVIEWS
Keywerds: Molecular photoswitches Photophysics Super-resolution imaging dSTORM Diffraction limit Single-molecule based localiz microscopy	ation	DOI: 10.1002/cphc.201000189 Make them Blink: Probes for Jan Vogelsang, ¹⁰ Christian Steinhauer, ¹⁰ Cars Skeero, ²⁰ Thorben Cordes, ²⁰ and Philip Tinne	• Super-Resc ten Forthmann, ^[a] ffeld* ^[a]	Diution Microscopy Ingo H. Stein, ^[2] Britta Person-
Introduction Fluorescence micross Huorescence micross their structural organiz; the recent past, the too extended by a number enhanced spatial resolu 2007; Gustafsson, 2000 2005; Hell av et al., 2006; Stel able fluorophin fluorophin fluoropcine	copy allows the n ation, as well as b blox of fluoresce of novel super- tion (Betzig et a tion (Betzig et a tion (Betzig et a tion (Betzig et a) tion (Betzig et a)	In recent years, a number of approaches have emerged this enable far-field fluorescence imaging beyond the diffraction limit of light, namely supervisiontion microscopy. These tech- niques are beginging to proflowing sheer our abilities to boli at biological structures and dynamics and are bound to spress into conventional biological laboratories. Novideys these ap-	vide an overview of microscopy techniqu for the fluorescent p vances in understand of single fluorophos single-molecule com	recent developments in super-resolution as and outline the special requirements trobes used. In combination with the ad- angle the photophysics and photochemistry es, we demonstrate how exercisely any patiele fluorophoe can be used for super-
cepts. In enrst single fluoroph tion microscop or NASCA (nan microscopy) (R fluorophores (e fluorophores (e fluorophores (e fluorophores (e fluorophores (e fluorophores (e al., 2007).	Evalı	nation of fluorophores	for opti	mal performance
-	in lo Graham T	Calization-based super Dempsey ^{1,6} , Joshua C Vaughan ^{2,3,6} , Kok Hao	' -resolut Chen ^{3,6} , Mark Ba	ion imaging ttes ⁴ & Xiaowei Zhuang ^{2,3,5}
ture America, Inc. All rights reserved.	One approa sequential i to achieve f is the choic probes, incl cycle, phote dictate the probes have properties c image quali quantitative of super-res characterizz selecting pr several pho- in four inde low-cross-t	It to super-resolution fluorescence imaging uses ctrivation and localization of Individual fluorophores igh spatial resolution. Essential to this technique of fluorescent probes: the properties of the using photoes: the properties of the using photoes per switching event, on-off duty stability and number of switching cycles, largely quality of super-resolution images. Although many been reported, a systematic characterization of the fluese probes and their impact on super-resolution by has been described in only a flew cases. Here we by characterized these synchrists to the quality oution inages. This analysis provides guidelines for tion of super-resolution probes and a resource for obset has do operformance. Our evaluation identified oswitchable doyse vitil godt ox-callent performance pendent spectral ranges, with which we demonstrated di, four-color super-resolution imagin.	STORM concept is phores and fluore probes have been imaging, includin and quantum dot illumination of a single laser wavele where the laser ac to the fluorescent switching it off to can transition bett successful to the fluorescent probes to by several oth which use the san a technique gener The photoswitt	also applicable to other photoswitchable fluoro- scent proteins." Indeed, a variety of fluorescent used for localization-based super-resolution (granic dyea ³⁺ ."). fluorescent proteins ^{45,223} pr ³ . In the simplest imaging mode, continuous ingle dye (for example, Alexa Fluor 647) with a right can generate high-quality STORM images, omplishes all three tasks of activating the dye state, exciting fluorescence from the dye and the dark state ⁴⁴ . As Alexa Fluor 647, a variety of rganic dyes spanning a broad spectrum of colors went fluorescent and dark states and have been solution imaging ^{1,41,11,41,41} . Depending on the used, this imaging method has also been referred ar names (for example, direct (d)STORM ^{11,13} . If used in the mode as STORM, ally applicable to photowitchable probes.

The spatial resolution limit of light microscopy imposed by diffraction has recently been overcome by super-resolution times upon excitation by light either of the same or different fluorescence imaging methods^{1,2}. Among these methods, stochastic optical reconstruction microscopy (STORM)3 and tially in a dark state and can be activated by light to a fluorescent (fluorescence) photoactivated localization microscopy^{4,5} can be used to achieve sub-diffraction-limit resolution by sequen-inine, rhodamine and oxazine dyes^{3,6,7,10,15,16} and photoswitch-

Na

tchable fluoro of fluorescent ner-resolution proteins4,5,22,2 de, continuous or 647) with a FORM image vating the dy m the dye and 47, a variety of ctrum of colors and have been ending on the o been referred STORM^{11,15}) le as STORM probes The photoswitchable probes can be largely divided into two categories (Fig. 1b): (i) reversibly switchable probes that can be

converted between fluorescent (on) and dark (off) states multiple wavelengths and (ii) irreversibly activatable probes that exist ini

Advice: Once you have picked a dye for your SMLM experiment depending on your microscope (available lasers) and biological constraints, make yourself familiar with which buffers are most suitable and test & optimize them.

Comparison of image quality in ageing Gloxy buffer (B) to that in OxEA buffer (A).

<u>Advice:</u> Always prepare your imaging buffer right before experiments & adjust your imaging buffer choice for multicolor experiments.

Overview

- Basic principles 2D SMLM
- Hardware for SMLM
- Practical considerations: sample preparation, suitable dyes, linkage errors, and buffers
- Processing, quantification, and interpretation of SMLM data
- 3D SMLM
- Summary
- Extra: New directions in SMLM
- Extra: SRM as a multidimensional challenge
Processing, quantification, and interpretation of SMLM data

How large is an SMLM dataset?

50,000 frames taken with a 16-bit camera (1024 x 1024 pixel) lead to...

Total number of pixel on the detector:

1024 x 1024 = 1,048,576 pixel

Total bits:

1,048,576 x 16 bits = 16,777,216 bits

Conversion into bytes:

16,777,216 bits / 8 = 2,097,152 bytes ~ 2 MB (one frame)

Upscaled to 50,000 frames:

2 MB x 50,000 ~ 100 GB

That is a lot of data that needs to be handled...

From raw SMLM data to reconstructed super-resolved image

Betzig et al. Science (2006), Hess et al. Biophy. J. (2006), Rust et al. Nat Methods (2006)

 $t_1 < t_2 < t_3$

39

Detection

Approximate molecule location
 = Detection

Detection and localization

- Approximate molecule location
 = Detection
- Accurate determination of the molecule center
 - = Localization

VS.

Error in localization – Equations

- Δx Error in localization
- s Standard deviation of the PSF
- N Number of photons collected

The modified equation to account for photon-counting noise, pixelation noise and background noise:

$$\langle (\Delta x)^2 \rangle = \frac{s^2 + a^2/12}{N} + \frac{4\sqrt{\pi} s^3 b^2}{aN^2}$$

- a Size of the pixel
- b Background noise

Detection and localization

- Approximate molecule location
 = Detection
- Accurate determination of the molecule center
 - = Localization

 Result: List of localizations (x,y coordinates, localization errors / uncertainties & add. parameters)

Pixel data vs. point clouds

In contrast to standard microscopy imaging that produces 2D pixel or 3D voxel grid data, SMLM generates big data of 2D or 3D point clouds with millions of localizations and associated uncertainties.

Therefore, processing, quantification, analysis and interpretation of SMLM must be approaches differently.

To this day, the SMLM data quantification and interpretation methods have yet to keep pace with the rapid advancement of SMLM imaging.

List of localizations

💵 table.csv — 🗆 🖂										
File	Edit Font	t								
frame	x [nm]	y [nm]	sigma [nm]	intensity [photon]	offset (photon)	bkgstd (photon)	chi2	uncert	ainty (r	nm]
1	741.901	1574.589	160.676	17617.183	408.961	130.351	249.619	9.655		
1	914.204	2914.019	131.233	26961.704	418.935	86.675	110.236	2.894		
1	1125.308	1717.344	183.079	28488.880	351.342	154.566	317.023	9.183		
1	1272.063	1283.757	133.728	51800.644	544.699	135.958	177.725	2.429		
1	1610.142	4910.579	152.097	19029.848	382.160	110.653	189.714	6.836		
1	1883.886	2780.288	139.036	9875.060	389.644	64.031	103.335	6.444		
1	1830.427	3348.119	128.861	31983.804	449.100	55.285	38.455	1.617		
1	2072.872	5764.087	137.928	16175.788	347.634	45.759	41.656	2.917		
1	2160.275	4649.883	120.954	15749.719	493.615	129.683	299.238	6.120		
1	3105.846	576.307	136.819	21731.526	365.701	98.832	134.234	4.372		
1	3193.117	2718.511	139.200	20688.293	359.232	85.922	116.766	4.154		
1	3265.796	4958.335	144.618	38272.718	444.637	210.325	472.238	5.811		
1	3300.404	6025.881	163.819	27006.656	434.459	201.263	489.726	10.077	7	
1	3681.354	5651.756	139.151	8237.949	474.530	168.458	464.816	19.912	2	
1	3836.527	5060.772	136.762	36675.545	456.969	73.572	83.341	2.018		
1	4180.302	3022.617	142.619	31289.970	445.729	81.376	98.455	2.777		
1	4248.838	3735.060	124.216	18148.712	384.321	45.779	45.874	2.169		
1	4401.310	1663.015	172.093	17736.170	324.952	116.147	244.009	9.811		
1	4532.690	319.943	132.927	15421.580	313.736	41.543	38.752	2.626		
1	4859.967	5001.065	142.809	15177.802	366.217	60.786	78.230	4.262		
1	5049.826	5670.416	181.253	18816.169	348.736	145.181	387.228	12.778	3	
2	482.777	315.109	168.516	36164.487	577.269	719.319	2539.212	28.331	1	
2	555.924	1375.909	127.502	14748.975	475.976	78.206	116.466	4.454		
2	914.892	2920.314	132.685	33699.764	422.433	85.630	103.595	2.361		
2	1140.335	1739.353	157.187	21146.465	379.945	144.850	273.962	8.556		
? ∢ [1302 302	13/6 130	126.440	31///7 57/	/95 309	168.458	340 510	A 365		ſ

x,y – central coordinate sigma - Gaussian width Gaussian amplitude / offset χ2 – goodness-of-fit

(

Uncertainty

$$|\Delta x)^2\rangle = \frac{s^2 + a^2/12}{N} + \frac{4\sqrt{\pi} s^3 b}{aN^2}$$

Sequence of SMLM processing and analysis steps

High-density data / multiple emitters

Choosing a suitable multi-emitter fitting method/algorithm can help to deal with high-density data.

Alternatively, you can filter/sieve your data to handle invalid localizations.

Advice: Choose suitable filtering parameters with the histogram of the respective fitting parameter.

SMLM's resolution

	💵 ta	able.csv							_		×	
	File	Edit Font										
	frame	x [nm]	y [nm]	sigma [nm]	intensity (phot	on] offset (pho	iton] bkgstd	[photon] chi2	uncert	ainty (i	nm]	-
	1	741.901	1574.589	160.676	17617.183	408.961	130.35	1 249.619	9.655			
	1	914.204	2914.019	131.233	26961.704	418.935	86.675	110.236	2.894			
	1	1125.308	1717.344	183.079	28488.880	351.342	154.56	6 317.023	9.183			
	1	1272.063	1283.757	133.728	51800.644	544.699	135.95	8 177.725	2.429			
	1	1610.142	4910.579	152.097	19029.848	382.160	110.65	3 189.714	6.836			
	1	1883.886	2780.288	139.036	9875.060	389.644	64.031	103.335	6.444			
	1	1830.427	3348.119	128.861	31983.804	449.100	55.285	38.455	1.617			
_				107.000	10175 700		59	41.656	2.917			
	💵 u	ncertain	ty Distrik	oution	—		× 68	3 299.238	6.120			
~		10		0414			32	134.234	4.372			
3	UUX2	40 pixels	S; RGB; 2	281K			22	116.766	4.154			
							32	5 472.238	5.811			
		1 L .					26	3 489.726	10.077	7		
						2	45	8 464.816	19.912	2		
						S^2	72	83.341	2.018			
				($\langle \Delta x \rangle^2 \rangle =$		76	98.455	2.777			
					() /	N	79	45.874	2.169			
				_			14	7 244.009	9.811			
							43	38.752	2.626			
							86	78.230	4.262			
							18	1 387.228	12.778	3		
							31	9 2539.21	2 28.33°	1		
		0.00077/	204				o6 ا م	116.466	4.454			
		0.833779	981		40	0.2025680	5 30	103.595	2.361			
		Count:	170730	Mi	n: 0.833779	81	85	0 273.962	8.556			
		Mean: 5	5.993167	'19 Ma	ax: 46.20256	6805	45	8 3/0 510	1 355			-
		StdDev	4 57710	0395 Mo	de: 2 2695	0096 (1319	92)					_
		Bins: 1	58	Bi	width 0.2	8714423	-/					
		Dino. I.			111100.2	0714420						
	<u> </u>								rer	ז ר	It.	C
								TOUL	Jai	1 11	11	C
	1 L	isti Lo	al App	Iv ROI to 1	filter I					-		

So, when you filter/sieve out high uncertainties, you can reach insanely high resolutions, right? No, not really!

filter high uncertainties, but at a certain point you'll lose the structure's integrity. The measure of resolution would be meaningless.

Drift-correction

4 min movie

Drift becomes a limiting factor in achieving high resolution. Fortunately, it can be corrected for by fiducial-based or image-based (cross-correlation) strategies.

Grouping / Blink-correction

Software for SMLM

nature methods	https://doi.o	ANALT STS rg/10.1038/s41592-019-0364-4 rected: Publisher Correcti	n		
Super-resolution fight club: assess	smer aliza	nt tion			
of 2D and 5D only					
microscopy software					PeakFit
al an al 22 Hazen Babcock 02, Tomas				3	D-DAOSTO
Daniel Sage 122*, Thanh-An Pham 4, Harbert 9, Anurag Ag			_		ADCG
Jerry Chao 67, Ramraj Velmurugan , Alexer 1014, Raimund Ober67	۱ <u> </u>				VolDhot
Ann Wheeler ¹² , Anna Archetti ¹⁵ , Berlin House Ricardo Henriques ²⁰				3	
Jean-Baptiste Sibarita 17/18, Jonas Ries V					Spline
and Seamus Holden 21,22*	3			mle	PALM
deenroad uptake of two-dimensional (2D) and three-dimensional to				Wa	veTracer
With the widespices of different data analysis package of the second and a competition to extensively characterize and ranging m					
community effort, we designed a calistic simulated datasets for population of the second seco				Thu	nderSTORM
double-helix 3D-and evaluated 36 participant provide a holistic view of how the latest 2D and 3D SMLM				Thu	
SMLM software and provides to identify optimal analytical software, and provides in:				5.01	1 2010
to benchmark new software against the current and				FAL	CON
finding the central to single-molecule local-	ĉ			SMfi	t
mage-processing software is click and automated image mation from the mation f	<			Rain	STORM
processing is essential to extract the super-resorced primages shape of a point processing is essential to extract the super-resorced primages prin				QC-	STORM
individual molecules from fluorescent spots. Improvements the challenging millions of blinking fluorescent spots. Improvements the challenging the challenging spatial the cha	5			TVS	OBM
SMLM image processing have been crucial in SMLM for compatibil- for two or three for the second seco				Bania	STORM
resolution and reducing the first SMLM is to achieve a resolving period test data or m isy with live-cell imaging ¹⁻⁰ . If SMLM is to achieve a resolving period test data or m				Паріс	
approaching that of electron microscopy at current algorithmic sets and the accurate, and perform at current algorithmic how different				Local	Izer
limits. This can be achieved only through rigorous quantum and determine with	2			pSMLM	
SMLM software performance. The first localization-microscopy software challenge was carried ity is optimal ity is optimal				SFP Esti	mator
out in 2013 to benchmark two-dimensional (20) due to benchmark two-dim	1			MIATool	
But biology is not just a 20 pional (3D) imaging of nanoscare central assessed soft				3D-WTM	
processes*. Three-dimensional localization for maximum				EIDEST	
difficult image-processing p					
"Biomedical Imaging Group, School of Engineering, Ecole Polytection of Nanoscale Biology and La	1			SMAP-20	18
Imaging, Harvard University, Camoringer Imaging, Harvard University, Camoringer Switzerland. "Department of Radioelectronics, New Switzerland. "Department of Radioelectronics, New Switzerland."				Octane	
of Minnesota Informatics Institute, University of Molecular and Cellular Medicine, real of Minnesota Informatics Institute, USA, 7Department of Molecular and Cellular Medicine, real of Minnesota Informatics Institute, University Heat			N	laLiang	
University, College Station USA, "Department of Microbial Pathogenesis and Immunous," Brighton, UK. "Double Helix USA, "Department of Microbial Pathogenesis university of Sussex, Brighton, UK. "Double Helix			Qu	ickPALM	
Stability Centre, School of Life Science, Institute of Genetics and Molecular Mo			L1H		
Biophysics, Ecole Polytechnique Federate de Construction of Southampton, Southampto					
the Nethersahos. of Colorado, Colorado Springs, CO, USA. "Interdiscipation of Scientifique (CNRS) UMR 525 of Colorado, Colorado Springs, Contre National de la Recherche Scientifique (CNRS) uMR 525		\M/T	M		
Institute for Neuroscience, Centre Heidelberg, Germany, ³⁰ Quantitative imaging cull Biology and Biophysics Unit, Heidelberg, Germany, ³⁰ Quantitative imaging the second secon		Deck Ochevity	VI		
University College London, London, UK. / Canter to University College London, London, UK. / Canter Sage, Thanh-An Pham, Seamus Holder, university College London, London, UK. / Canter to University College London, London, London, UK. / Canter to UNIVERSITY College London, London, London, UK. / Canter to UNIVERSITY College London, Lo		PeakSelector			
UK. "These autriors control to LMAY 2019 [387-395] www.nature.com/naturemethods	0	20	40	60	80
NATURE METHODS VOL 10 MICH 2011	۲ ۲	20	TV	00	00

100

Software	Molecule detection	PSF	Method	Platform	Acc.
3D-DAOSTORM ²⁸	Adaptive threshold—update on residual images	Gauss	LS	Python	+
a-livePALM ²⁹	Denoising, SNR threshold, adaptive histogram equalization	Gauss	MLE	Matlab	+
Auto-Bayes	Generalized minimum-error threshold (GMET), local maximum	Gauss, Weibull	LS	Stand-alone	+
B-recs	Detection: n/a; fit: Bayesian inference framework	Arbitrary	MMSE, MAP	Stand-alone	-
CSSTORM ³⁰	No explicit localization; convex optimization problem (HD)	Gauss	Compressed sensing	Matlab	+
DAOSTORM ³¹	Gaussian filtering, local maximum (HD)	Measured,	LS	Python	+
FacePALM ³²	No explicit localization; background estimation	arbitrary	-	Python	-
FALCON ³³	Deconvolution with sparsity prior, local maximum (HD)	Taylor approx.	ADMM	Matlab	+
Fast-ML-HD ³⁴	Sparsity constraint, concave-convex procedure (HD)	Gauss	MLE	Matlab	-
FPGA ³⁵	Adaptive threshold	Gauss	MLE, CoMass	Stand-alone	-
Gauss2DCirc ³⁶	Fixed SNR threshold	Gauss	REG	Matlab	+
GPUgaussMLE ³⁷	Simple (unspecified) methods to select subregions	Gauss	MLE	Matlab	+
GraspJ ³⁸	Peak finding: fixed threshold value	Gauss	MLE	ImageJ	+
Insight3	Low-pass filtering, local maximum	Arbitrary	LS	Stand-alone	-
L1H ³⁹	No explicit localization; L1 homotopy, FIST deconvolution	Gauss, arbitrary	Compressed sensing	Python	+
M2LE ⁴⁰	Adaptive threshold	Gauss	MLE	ImageJ	+
Maliang ⁴¹	Annular averaging filters, denoising by convolution	Gauss	MLE	ImageJ	+
Micro-Manager LM	Adaptive threshold	Gauss	LS	ImageJ	+
MrSE ⁴²	Band-pass filtering, local maximum	Radial	CoSym	Stand-alone	-
Octane ⁴³	Watershed maximum	Gauss	LS	ImageJ	+
PeakFit	Band-pass filtering, local maximum	Gauss	LS	ImageJ	+
PeakSelector ⁴⁴	Time-domain filtering, adaptive threshold	Gauss	LS	IDL, Matlab	-
PYME ²⁷	Wiener filtering, adaptive threshold	Arbitrary	LS	Python	+
QuickPALM ⁴⁵	Band-pass filtering, fixed SNR threshold	Gauss	CoMass	ImageJ	+
RadialSymmetry ⁴⁶	Filtering, local max., minimal distance to gradient	Radial	CoSym	Matlab	+
rapidSTORM12	Low-pass filtering, local maximum	Gauss	LS, MLE	Stand-alone	+
SimplePALM ⁴⁷	Variance stabilization denoising, DoG, probabilistic threshold	n/a	Mean-shift	Stand-alone	-
simpleSTORM ¹⁴	Self-calibration, noise normalize, background subtraction, P value	Gauss, measured	Interpolation	Stand-alone	+
SNSMIL	Gaussian filtering, fixed contrast threshold	Gauss	LS	Stand-alone	+
SOSplugin	Wavelet transform, local maximum,	Gauss	LS	ImageJ	+
ThunderSTORM ¹⁵	Extensive collection of methods, preview, filtering, local maximum	Gauss	LS, MLE	ImageJ	+
W-fluoroBancroft ⁴⁸	Wavelet, adaptive threshold	Gauss	fB	Matlab	+
WaveTracer ⁴⁹	Wavelet, watershed maximum	Gauss	LS	Metamorph	-
WTM ⁵⁰	Wedge template matching (HD)	Wedge	Match.	Stand-alone	-

Ovesny et al. Bioinformatics (2014)

Feel free to test it...

Use the Fiji plugin ThunderSTORM to analysis the Tubulin 2D Long Sequence Dataset

Software: Fiji plugin ThunderSTORM Plugin can be downloaded here: <u>https://github.com/zitmen/thunderstorm/releases/tag/v1.3</u> and will be located here: Plugins > ThunderSTORM

Online manual:

https://github.com/zitmen/thunderstorm/wiki/Tutorials

Dataset: Tubulin 2D Long Sequence http://bigwww.epfl.ch/smlm/datasets/index.html?p=../challe nge2013/datasets/Real_Long_Sequence

Timeline of SMLM developments

Spatial analysis approaches

Fiji plugins for SMLM post-processing

Name	Description	Year
bUnwarpJ	2D image registration; channel alignment by elastic transformation, deformations are represented by cubic B-splines	2006
ClearVolume	Multi-channel visualization package; rendering of image stacks for 3D and multi-colour representation	2015
FIRE	Resolution estimation; first ImageJ plugin for FRC analysis	2013
GDSC SMLM	Collection of plugins; many features such as drift correction, local density analysis, pair correlation analysis, and FRC	
MosaicIA	Cluster analysis; calculates an interaction potential that is most likely to generate the observed object distribution	2013
NanoJ-core	Drift correction and multi-colour channel alignment	2015
NanoJ-SQUIRREL	Benchmarking SMLM images; generates error map and FRC map, uncovers local differences in resolution	2018
QuASIMoDOH	Cluster analysis; divides images into tiles (tessellation), pattern analysis done by analysing the distribution of tile areas	2016
TRABI	Intensity analysis; macro that determines spot intensities in SMLM data by temporal analysis; can extract 3D information from 2D data	2017

Overview

- Basic principles 2D SMLM
- Hardware for SMLM
- Practical considerations: sample preparation, suitable dyes, linkage errors, and buffers
- Processing, quantification, and interpretation of SMLM data
- 3D SMLM
- Summary
- Extra: New directions in SMLM
- Extra: SRM as a multidimensional challenge

3D SMLM

Can we localize SM in the axial direction?

A microscope's PSF is symmetric in the axial direction, which complicates single molecules' localization along the axial axes.

-600 n**m**

Decoding the axial information

Breaking the symmetry of the PSF enables us to decode axial information.

Cylindrical lens in detection path

Emitted light detected onto two cameras (or two halves of one camera) defocused relative to one another Spatial light modulator / phase mask in detection path

Decoding the axial information

2 µm

Decoding the axial information

Breaking the symmetry of the PSF enables us to decode axial information.

iPALM

Resolution: 10-20 nm in all three dimensions

Overview

- Basic principles 2D SMLM
- Hardware for SMLM
- Practical considerations: sample preparation, suitable dyes, linkage errors, and buffers
- Processing, quantification, and interpretation of SMLM data
- 3D SMLM
- Summary
- Extra: New directions in SMLM
- Extra: SRM as a multidimensional challenge

Summary

Let's wrap it up...

Merits

- Very high resolution
- Single molecule detection
- Relative simple microscope setup
- Can be combined with TIRF and inclined illumination (HILO)
- Quantification of protein numbers
- Upgrade solution for exciting setups to enable extended 3D localization using PSF engineering (e.g., Double Helix)

Let's wrap it up...

Disadvantages

- Special buffers/probes required
- Not for thick samples (< 10 um)
- Slow acquisition
- Limited 3D (no sectioning)
- Advanced post-processing needed
- Prone to reconstruction artifacts
- Structural resolution labeling densitydependent

Overview

- Basic principles 2D SMLM
- Hardware for SMLM
- Practical considerations: sample preparation, suitable dyes, linkage errors, and buffers
- Processing, quantification, and interpretation of SMLM data
- 3D SMLM
- Summary
- Extra: New directions in SMLM
- Extra: SRM as a multidimensional challenge

ZEISS

Thank you! Questions?

Ulrike Boehm, Ph.D. ulrike.boehm@zeiss.com

Twitter: @ulrike_boehm

Opt to Work at ZEISS Job openings and applications

https://www.zeiss.com/corporate/int/careers/ job-openings-and-applications.html

Photo: Martin Duckek

New dimensions in SMLM

MINFLUX emitter localization concept

b MINFLUX nuclear pore complex imaging

Expansion SMLM

d Expansion SMLM

Deep learning-accelerated SMLM

SRM as a multidimensional challenge

Inherent trade-offs in SRM

Decision tree for selecting SRM techniques

Appendix

Switching buffers

Buffer class	Buffer base	Compounds	Organic dyes used in switching buffer / description	
Reducer - O ₂	PBS/TRIS pH 7.4 - 9 - O ₂	10 - 100 mM MEA	AF 750 [96], CF 680 [63], CF 647 [63], AF 647 and Cy5 [10], CF 568 [63], AF 532 [106], ATTO 520 [103]	
		0.5 - 1% BME	AF 750 [112], CF 680 [98], Cy5 readout pairs [9, 58], AF 647 [92]	
		10 - 100 mM GSH	AF 647 [106], TMR [106]	
	PBS/TRIS pH 7.4 - 9	10 - 100 mM MEA	AF 647 [54], ATTO 655 [100], AF 568 [54], ATTO 520 [111], AF 532 [105], AF 488 [111]	
		0.5 - 1% BME	ATTO 655 [100]	
Reducer only		50 µM AA	ATTO 655 [169]	
		10 - 100 mM GSH	ATTO 655 [52], ATTO 520 [52]	
		50 mM TCEP + 2 mM COT	AF 750 [97], AF 647 [97]	
	PBS/TRIS pH 7.4 - 9	GLOX*	AF 568 [121], ATTO 520 [121], AF 488 [121]	
Oxygen removal (- O ₂)		PCD/PCA*		
		POC*		
		100 mM MEA + 1 µM MB	Cy5 [170]	

Switching buffers

Switching ROXS reducer and oxidizer - O ₂	PBS/TRIS pH 7.4 - 9 - O ₂	500 μM AA + 25 μM MV	ATTO 655 [171]
		1 mM AA + 1 mM MV + 25 mM TCEP, pH 9	AF 750 [172], AF 647 [172], Cy5 [172]
	Vectashield	20% Vectashield + 80% (95% glycerol 50 mM TRIS)	AF 647 [110], CF 647 [110]
Switching	Mowiol	0.5% Mowiol + 50 mM DTT	SiR [101]
mount	Resin	100% dehydration + EM resin embedding	
	PVA	1% in PBS, spin coat	Oregon Green [41], AF 488 [41]
	DMEM, modified to not contain phenol red	None	SiR [102], TMR [55, 102]
Live-cell media		100 mM GSH + GLOX	AF 647 [106], TMR [106]
		25 mM TCEP	AF 647 [172], Cy5 [172]

Multicolor SMLM

	Name	Dual color combinations	Triple color combinations
	mEos2 (G)	AF 647 [90-92], ATTO 655 [53],	
eins	mEos2 (R)	psCFP2 [56]	
prot	PAmCherry1	paGFP [59]	eYFP + NileRed [93], PAmKate + Dendra2 [60]
scent	Dendra2 (G)		PAmKate + PAmCherry1 [60]
nore	Dendra2 (R)		
H	paGFP	PAmCherry [59]	PAmKate + PAmCherry1 [60], PAtagRFP + ATTO 655 [95]

Name		Dual color combinations	Triple color combinations	
	Alexa Fluor 750	AF 647 [97]		
	CF 680	AF 647 (#) [62, 98, 99]	CF 660C + DyLight 650 + Dy 634	
	ATTO 655 (§)	ATTO 520 [52], mEos2 [53]	PAtagRFP + paGFP [95]	
es fo su	SiR (§)	mEos2 [57]	TMR + paGFP [102]	
	Alexa Fluor 647	ATTO 520 [103], AF 532 [104, 105], ATTO 532 [54], AF 546 [54], AF 568 [54], TMR [106], mEos2 [90-92], AF 488 [91], psCFP2 [56], mMaple [99], ATTO 488 [107], CF 680 (#) [62,98, 99], AF 700 (#) [61], AF 750 (#) [97], Dy678 (#) [108], Dronpa [109]	AF 568 + ATTO 488 [107]	
	CF 647		CF 680 (#) + CF 568 [63]	
0	Cy5			
	Alexa Fluor 568	AF 647 [54]	AF 647 + ATTO 488 [107]	
	CF 568		CF 680 + CF 647 [63]	
	TMR (§)	AF 647 [106], Citrine [55]	SiR + paGFP [102]	
	Alexa Fluor 532	AF 647 [104, 105]		
	ATTO 520	AF 647 [103], ATTO 655 [52]		
	Alexa Fluor 488 (§)	AF 647 [91]	AF 647 + AF 568 [107], Cy3 + ATTO 532 [55], Rhodamine 3C + AF 514 [55]	
	Cy5/AF 647 readout dye pairs	Reporter: AF 750 [112] Activator: Cy3 + AF 405 [112]	Reporters: Cy7 + Cy5.5 [58] Activators: Cy3 + Cy2 + AF 405 [58]	

Turkowyd et al. Anal. Bioanal. Chem. (2016)

Organic dyes