Ken Cowan, MD, PhD

Director and Physician-in-Chief

Fred & Pamela Buffett Presidential Chair
Fred & Pamela Buffett Cancer Center
Eppley Institute for Research in Cancer 

Phone:  402-559-4238
Fax:  402-559-4652
E-Mail: Ken Cowan
Ken Cowan, MD, PhD


Education

BA - University of Rochester, Chemistry
MD, PhD - Case Western Reserve University, Pharmacology

Bio

Kenneth H. Cowan, MD, PhD, became the director of the Fred & Pamela Buffett Cancer Center (formerly the UNMC Eppley Cancer Center) and the Eppley Institute for Research in Cancer and Allied Diseases in August 1999. The Fred & Pamela Buffett Cancer Center, created in 1983, is an NCI-designated clinical cancer center, uniting cancer researchers throughout the UNMC campus into a larger single entity. The Eppley Institute was founded in 1961. Dr. Cowan is the sixth director in the institute’s 40 year history. The Eppley Institute for Research in Cancer and Allied Diseases is a division of the University of Nebraska Medical Center with 27 basic science laboratories headed by principal investigators focused on cancer research.

Prior to this, since completing his residency training at Texas Southwestern Affiliated Hospitals in Dallas, Dr. Cowan spent 21 years in the Public Health Service at the National Cancer Institute. Since 1988, he served as Chief of the Medical Breast Cancer Section, Medicine Branch. In his NCI position, he was responsible for overseeing laboratory researchers and clinical staff involved in basic and clinical research in breast cancer.

A New York City native, Dr. Cowan earned his undergraduate degree at the University of Rochester in Rochester, NY, and his medical and doctorate degrees from Case Western Reserve University in Cleveland. He has authored more than 240 papers for scientific journals and has been an invited guest lecturer at numerous scientific conferences.

Research Interests

Our laboratory is interested in understanding the role of tumor suppressor genes in the development of human tumors. We have constructed a series of recombinant viral vectors to study the effects of overexpression of tumor suppressor genes on the biology of breast cancer and for use in gene therapy of human tumors. Recombinant non-replicating adenoviral vectors are useful for these studies for several reasons; 1) human breast cancer cells (as well as many other normal and transformed human cell lines) contain high levels of adenoviral receptors and are readily infected by adenoviral vectors; 2) adenoviral vectors infect both replicating and quiescent cells; and 3) high levels of intracellular transgene expression is detected within 12 hours following infection with adenoviral vectors.

We have constructed a series of adenoviral vectors, including a vector that expresses the wild type breast cancer tumor suppressor gene BRCA1, and have studied the effects of tumor suppressor gene overexpression on cell cycle regulation and apoptosis in human breast cancer cells both in vitro and in vivo.

Our laboratory has also been involved in identifying the mechanisms associated with development of multi-drug resistance and the regulation of expression of drug resistance genes in human tumor cells. We have isolated a series of drug resistant human breast cancer cell lines, studied their pharmacological characteristics, and identified the genes associated with resistance in each cell line. We are also examining the ability to transfer drug resistance genes into hematopoietic stem cells in clinical trials in patients with breast cancer patients treated with high dose chemotherapy and hematopoietic stem cell rescue.. The goal of these studies is to determine whether patients can be reconstituted long term with gene modified hematopoietic cells and whether the expression of drug resistance genes in hematopoietic progenitor cells will permit treatment with higher doses of chemotherapy and overcome clinical drug resistance in patients with breast cancer.

Selected Publications